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Preface

The first edition of this book appeared in 1992; this is the sixth edition and there have
been a few changes, mostly a few corrections and additions, but also more substan-
tive changes to Chapter 13 Data Handling and Probability Theory. Echoing the words
of my predecessor Professor Glyn James, the range of material covered in this sixth
edition is regarded as appropriate for a first-level core studies course in mathematics for
undergraduate courses in all engineering disciplines. Whilst designed primarily for use
by engineering students it is believed that the book is also highly suitable for students
of the physical sciences and applied mathematics. Additional material appropriate for
second-level undergraduate core studies, or possibly elective studies for some engi-
neering disciplines, is contained in the companion text Advanced Modern Engineering
Mathematics.

The objective of the authoring team remains that of achieving a balance between
the development of understanding and the mastering of solution techniques, with the
emphasis being on the development of the student’s ability to use mathematics with
understanding to solve engineering problems. Consequently, the book is not a collec-
tion of recipes and techniques designed to teach students to solve routine exercises, nor
is mathematical rigour introduced for its own sake. To achieve the desired objective
the text contains:

e Worked examples
Approximately 500 worked examples, many of which incorporate mathematical
models and are designed both to provide relevance and to reinforce the role of
mathematics in various branches of engineering. In response to feedback from
users, additional worked examples have been incorporated within this revised
edition.

e Applications
To provide further exposure to the use of mathematical models in engineering
practice, each chapter contains sections on engineering applications. These sec-
tions form an ideal framework for individual, or group, case study assignments
leading to a written report and/or oral presentation, thereby helping to develop
the skills of mathematical modelling necessary to prepare for the more open-
ended modelling exercises at a later stage of the course.

e Exercises
There are numerous exercise sections throughout the text, and at the end of each
chapter there is a comprehensive set of review exercises. While many of the
exercise problems are designed to develop skills in mathematical techniques,
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others are designed to develop understanding and to encourage learning by
doing, and some are of an open-ended nature. This book contains over 1200
exercises and answers to all the questions are given. It is hoped that this provi-
sion, together with the large number of worked examples and style of presenta-
tion, also make the book suitable for private or directed study. Again in response
to feedback from users, the frequency of exercise sections has been increased
and additional questions have been added to many of the sections.
e Numerical methods

Recognizing the increasing use of numerical methods in engineering practice,
which often complement the use of analytical methods in analysis and design
and are of ultimate relevance when solving complex engineering problems,
there is wide agreement that they should be integrated within the mathemat-
ics curriculum. Consequently the treatment of numerical methods is integrated
within the analytical work throughout the book.

The position of software use is an important aspect of engineering education.
The decision has been taken to use mainly MATLAB but also, in later chapters,
MAPLE. Students are encouraged to make intelligent use of software, and where
appropriate codes are included, but there is a health warning. The pace of technol-
ogy shows little signs of lessening, and so in the space of six years, the likely time
lapse before a new edition of this text, it is probable that software will continue to be
updated, probably annually. There is therefore a real risk that much coding, though
correct and working at the time of publication, could be broken by these updates.
Therefore, in this edition the decision has been made not to overemphasize specific
code but to direct students to the Companion Website or to general principles instead.
The software packages, particularly MAPLE, have become easier to use without the
need for programming skills. Much is menu driven these days. Here is more from Glyn
on the subject that is still true:

Students are strongly encouraged to use one of these packages to check the
answers to the examples and exercises. It is stressed that the MATLAB (and a
few MAPLE) inserts are not intended to be a first introduction of the package to
students; it is anticipated that they will receive an introductory course elsewhere
and will be made aware of the excellent ‘help’ facility available. The purpose
of incorporating the inserts is not only to improve efficiency in the use of the
package but also to provide a facility to help develop a better understanding
of the related mathematics. Whilst use of such packages takes the tedium out
of arithmetic and algebraic manipulations it is important that they are used to
enhance understanding and not to avoid it. It is recognized that not all users of
the text will have access to either MATLAB or MAPLE, and consequently all
the inserts are highlighted and can be ‘omitted’ without loss of continuity in
developing the subject content.

Throughout the text two icons are used:

e An open screen indicates that use of a software package would be useful
(for example, for checking solutions) but not essential.

e A closed screen indicates that the use of a software package is essential or
highly desirable.
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Specific changes in this sixth edition are an improvement in many of the diagrams,
taking advantage of present-day software, and modernization of the examples and
language. Also, Chapter 13 Data Handling and Probability Theory has been significantly
modernized by interfacing the presentation with the very powerful software package
R. It is free; simply search for ‘R Software’ and download it. I have been much aided
in getting this edition ready for publication by my hardworking colleagues Matthew,
John and Yinghui who now comprise the team.

Feedback from users of the previous edition on the subject content has been favour-
able, and consequently no new chapters have been introduced. However, in response to
the feedback, chapters have been reviewed and amended/updated accordingly. Whilst
subject content at this level has not changed much over the years the mode of deliv-
ery is being driven by developments in computer technology. Consequently there has
been a shift towards online teaching and learning, coupled with student self-study pro-
grammes. In support of such programmes, worked examples and exercise sections are
seen by many as the backbone of the text. Consequently in this new edition emphasis
is given to strengthening the ‘Worked Examples’ throughout the text and increasing the
frequency and number of questions in the ‘Exercise Sections’. This has involved the
restructuring, sometimes significantly, of material within individual chapters.

A comprehensive Solutions Manual is obtainable free of charge to lecturers using
this textbook. It will be available for download online at go.pearson.com/uk/he/
resources.

Also available online is a set of ‘Refresher Units’ covering topics students should
have encountered at school but may not have used for some time.

This text is also paired with a MyLab™ - a teaching and learning platform that
empowers you to reach every student. By combining trusted author content with digital
tools and a flexible platform, MyLab personalizes the learning experience and improves
results for each student. MyLab Math for this textbook has over 1150 questions to
assign to your students, including exercises requiring different types of mathematics
applications for a variety of industry types. Note that students require a course ID and
an access card in order to use MyLab Math (see inside front cover for more information
or contact your Pearson account manager at the link go.pearson.com/findarep).
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2 NUMBER, ALGEBRA AND GEOMETRY

1.1

1.2

1.2.1

Figure 1.1
The number line.

Introduction

Mathematics plays an important role in our lives. It is used in everyday activities from
buying food to organizing maintenance schedules for aircraft. Through applications devel-
oped in various cultural and historical contexts, mathematics has been one of the decisive
factors in shaping the modern world. It continues to grow and to find new uses, particu-
larly in engineering and technology, from electronic circuit design to machine learning.

Mathematics provides a powerful, concise and unambiguous way of organizing and
communicating information. It is a means by which aspects of the physical universe
can be explained and predicted. It is a problem-solving activity supported by a body of
knowledge. Mathematics consists of facts, concepts, skills and thinking processes —
aspects that are closely interrelated. It is a hierarchical subject in that new ideas and
skills are developed from existing ones. This sometimes makes it a difficult subject for
learners who, at every stage of their mathematical development, need to have ready
recall of material learned earlier.

In the first two chapters we shall summarize the concepts and techniques that most
students will already understand and we shall extend them into further developments in
mathematics. There are four key areas of which students will already have considerable
knowledge.

numbers
algebra
geometry
functions

These areas are vital to making progress in engineering mathematics (indeed, they will
solve many important problems in engineering). Here we will aim to consolidate that
knowledge, to make it more precise and to develop it. In this first chapter we will deal
with the first three topics; functions are considered next (see Chapter 2).

Number and arithmetic

Number line

Mathematics has grown from primitive arithmetic and geometry into a vast body of
knowledge. The most ancient mathematical skill is counting, using, in the first instance,
the natural numbers and later the integers. The term natural numbers commonly refers
to the set N = {1, 2, 3, ...}, and the term integers to the set Z = {0, 1, —1, 2, —2, 3,
—3,...}. The integers can be represented as equally spaced points on a line called the
number line as shown in Figure 1.1. In a computer the integers can be stored exactly.
The set of all points (not just those representing integers) on the number line represents
the real numbers (so named to distinguish them from the complex numbers, which are

7 1

3 -0.5 7 \2 T
1 1 1
1 1 1
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1.2.2

discussed in Chapter 3). The set of real numbers is denoted by R. The general real num-
ber is usually denoted by the letter x and we write ‘x in R’, meaning x is a real number.
A real number that can be written as the ratio of two integers, like% or —%, is called a
rational number. Other numbers, like \2 and 7, that cannot be expressed in that way
are called irrational numbers. In a computer the real numbers can be stored only to a
limited number of figures. This is a basic difference between the ways in which com-
puters treat integers and real numbers, and is the reason why the computer languages
commonly used by engineers distinguish between integer values and variables on the
one hand and real number values and variables on the other.

Representation of numbers

For everyday purposes we use a system of representation based on ten numerals: 0, 1,
2,3,4,5,6,7,8,9. These ten symbols are sufficient to represent all numbers if a posi-
tion notation is adopted. For whole numbers this means that, starting from the right-
hand end of the number, the least significant end, the figures represent the number of
units, tens, hundreds, thousands, and so on. Thus one thousand, three hundred and sixty-
five is represented by 1365, and two hundred and nine is represented by 209. Notice the
role of the 0 in the latter example, acting as a position keeper. The use of a decimal point
makes it possible to represent fractions as well as whole numbers. This system uses ten
symbols. The number system is said to be ‘to base ten’ and is called the decimal sys-
tem. Other bases are possible: for example, the Babylonians used a number system to
base sixty, a fact that still influences our measurement of time. In some societies a num-
ber system evolved with more than one base, a survival of which can be seen in imperial
measures (inches, feet, yards, ...). For some applications it is more convenient to use
a base other than ten. Early electronic computers used binary numbers (to base two);
modern computers use hexadecimal numbers (to base sixteen). For elementary (pen-
and-paper) arithmetic a representation to base twelve would be more convenient than
the usual decimal notation because twelve has more integer divisors (2, 3, 4, 6) than
ten (2, 5).

In a decimal number the positions to the left of the decimal point represent units
(10%), tens (10"), hundreds (10?) and so on, while those to the right of the decimal point
represent tenths (10"), hundredths (107?) and so on. Thus, for example,

2 1 4 -3 6
Vol L
10> 10" 10° 107" 1072

SO

214.36 = 2(10% + 1(10") + 4(10°% + 3(%) + 6(%)
=200+ 10 + 4 + 3 + 1%
— 21436 _ 5359
100 25
In other number bases the pattern is the same: in base b the position values are b°,
b, b, ...and b, b7 % .... Thus in binary (base two) the position values are units, twos,
fours, eights, sixteens and so on, and halves, quarters, eighths and so on. In hexadecimal

(base sixteen) the position values are units, sixteens, two hundred and fifty-sixes and so
on, and sixteenths, two hundred and fifty-sixths and so on.
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Example 1.1  Write (a) the binary number 1011101, as a decimal number and (b) the decimal
number 115,, as a binary number.

Solution  (a) 1011101, = 1(2% + 02%) + 12%) + 1(2%) + 1(2%) + 02") + 1(2°)
= 641+ 0+ 16, + 80+ 4y + 0 + 1
= 93,
(b) We achieve the conversion to binary by repeated division by 2. Thus
115 +2 =57 remainder1 (27
57 +2 =28 remainder1 (2"
28 + 2 =14 remainder0 (2%
14 +2= 7 remainder0 (2°)
7+ 2= 3 remainderl (2%
3+2= 1 remainder1 (2%
1+2= 0 remainderl (29
so that

115,, = 1110011,

Example 1.2  Represent the numbers (a) two hundred and one, (b) two hundred and seventy-five,
(c) five and three-quarters and (d) one-third in

(i) decimal form using the figures O, 1, 2, 3, 4,5,6,7, 8, 9;
(i1) binary form using the figures O, 1;

(iii) duodecimal (base twelve) form using the figures 0, 1,2, 3,4,5,6,7, 8,9, A, ¢.

Solution (a) two hundred and one
(i) = 2 (hundreds) + 0O (tens) and 1 (units) = 201,,

(i) = 1 (one hundred and twenty-eight) + 1 (sixty-four) + 1 (eight) + 1 (unit)
= 11001001,

(iii) =1 (gross) + 4 (dozens) + 9 (units) = 149,
Here the subscripts 10, 2, 12 indicate the number base.
(b) two hundred and seventy-five
(i) = 2 (hundreds) + 7 (tens) + 5 (units) = 275,
(i) = 1 (two hundred and fifty-six) + 1 (sixteen) + 1 (two) + 1 (unit) = 100010011,
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(iii) = 1 (gross) + 10 (dozens) + eleven (units) = 1Ag,
(A represents ten and & represents eleven)

(c) five and three-quarters

(1) = 5 (units) + 7 (tenths) + 5 (hundredths) = 5.75,,
(i) = 1 (four) + 1 (unit) + 1 (half) + 1 (quarter) = 101.11,
(iii) = 5 (units) + 9 (twelfths) = 5.9,,

(d) one-third

(1)
(i) = 1 (quarter) + 1 (sixteenth) + 1 (sixty-fourth) + ... = 0.010101 ...,
(iii)) = 4 (twelfths) = 0.4,,

3 (tenths) + 3 (hundredths) + 3 (thousandths) + ... = 0.333 ...,

1.2.3 Rules of arithmetic

The basic arithmetical operations of addition, subtraction, multiplication and division are
performed subject to the Fundamental Rules of Arithmetic. For any three numbers

a, b
(al)

(a2)

(bl)

(b2)

(cD)

(c2)

and c:
the commutative law of addition
at+tb=b+a
the commutative law of multiplication
aXb=bXa
the associative law of addition
(a+b)+c=a+ b +c)
the associative law of multiplication
(axXb)yXc=aX(®bXc)
the distributive law of multiplication over addition and subtraction
(a+b)yXc=(@Xc)+ (b Xc)
(a—b)yXc=(@Xc)—(bXc)
the distributive law of division over addition and subtraction
(@a+b)+c=(@+c)+®d+c)
(a—b)y+~c=@+c)— (b +c)

Here the brackets indicate which operation is performed first. These operations are
called binary operations because they associate with every two members of the set of

real

numbers a unique third member; for example,

24+5=7 and 3 X 6=18
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Example 1.3

Solution

Example 1.4

Solution

Find the value of (100 + 20 + 3) X 456.

Using the distributive law we have
(100 + 20 + 3) X 456 = 100 X 456 + 20 X 456 + 3 X 456
= 45600 + 9120 + 1368 = 56 088
Here 100 X 456 has been evaluated as
100 X 400 + 100 X 50 + 100 X 6

and similarly 20 X 456 and 3 X 456.
This, of course, is normally set out in the traditional school arithmetic way:

456
123 X
1368
9120
45 600
56 088

Rewrite (a + b) X (¢ + d) as the sum of products.

Using the distributive law we have

(a+b)X(c+d)y=aX(c+d)+bX(c+d)

(c+dyXa+(c+d) Xb

cXa+dXa+cXb+dXb

aXc+aXd+bXc+bXd

applying the commutative laws several times.

A further operation used with real numbers is that of powering. For example, a X a
is written as a*, and a X a X a is written as a’. In general the product of n a’s where
n is a positive integer is written as a”. (Here the n is called the index or exponent.)
Operations with powering also obey simple rules:

a" X a"=a"'m" (1.1a)
at+=a"=a"" (1.1b)
(an)m = g™ (I.IC)

From rule (1.1b) it follows, by setting n = m and a # 0, that " = 1. It is also convention
to take 0° = 1. The process of powering can be extended to include the fractional powers
like a"?. Using rule (1.1c),
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Example 1.5

Solution

Example 1.6

(al/n)n — an/n — al

and we see that
a’ =™

the nth root of a. Also, we can define a ™ using rule (1.1b) with n = 0, giving
l1+~a"=a, a#0

Thus a " is the reciprocal of a™. In contrast with the binary operations +, X, — and =+,
which operate on two numbers, the powering operation ()" operates on just one element
and is consequently called a unary operation. Notice that the fractional power

a™ = (Na)" = "(a")

is the nth root of @™. If n is an even integer, then ™" is not defined when a is negative.
When "Va is an irrational number then such a root is called a surd.

Numbers like V2 were described by the Greeks as a-logos, without a ratio number.
An Arabic translator took the alternative meaning ‘without a word’ and used the Arabic
word for ‘deaf’, which subsequently became surdus, Latin for deaf, when translated
from Arabic to Latin in the mid-twelfth century.

Find the values of
(a) 271/3 (b) (_8)2/3 (C) 16—3/2
d (=272 (e (=18 (f) 9"

(a) 273 =327 =3
(b) (=8 = CV(~8)7 = (=2)" = 4
(C) 1673/2 — (161/2)73 — (4)—3 — 1 _ 6_14

VE

@ (22 = —s=t
(-2)?

() (Z1/8)F = [N(=1/8)1> = [N(=D/AN®)] > = [-1/2]* = 4
O OM"=03"=5

Express (a) in terms of V2 and simplify (b) to (f).

(@) VI8 +1\32 =50  (b) 612 © (1 = \V3)(1 + \3)
- 1-42
D173 (€) (1 +6)(1 — Vo) (f>ﬁ
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Solution (a) V18 = V(2 X 9) = V2 X \9 = 3\2
V32 = (2 X 16) =2 X V16 = 42
V50 = (2 X 25) = V2 X \25 = 5\2
Thus VI8 + V32 — V50 = 212,
(b) 6N2 =3 X 22
Since 2 = V2 X \2, we have 6/\2 = 3\2.
© (1=V3)A+V3)=1+V3-\3-3=-2

2
(d) Using the result of part (c), E can be simplified by multiplying ‘top and
bottom’ by 1 + V3 (notice the sign change in front of the ). Thus
2 2(1+43)
=43 (1-3)1+3)
C2(1+43)
1-3
=—1-13

(€ (1+V6)(1 —V6)=1—-V6+V6—6=—5
(f) Using the same technique as in part (d) we have
1-42 _ d-v2)1-A6)
1++6  (1++6)1—A6)

=2 -6 +412
B 1-6

=—(1—-\V2—-6+2V3)/5

This process of expressing the irrational number so that all of the surds are in the
numerator is called rationalization.

‘When evaluating arithmetical expressions the following rules of precedence are observed:

e the powering operation ( )" is performed first
e then multiplication X and/or division +
e then addition + and/or subtraction —

When two operators of equal precedence are adjacent in an expression the left-hand
operation is performed first. For example,

12-4+13=8+13 =21
and

I5+3X2=5X2=10
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Example 1.7

The precedence rules are overridden by brackets; thus

12-@4+13)=12—-17= -5

and

15+ (3X2)=15+6=25

This order of precedence is commonly referred to as BODMAS/BIDMAS (meaning:
brackets, order/index, multiplication, addition, subtraction).

Evaluate 7 — 5 X 3 + 2%

Solution  Following the rules of precedence, we have

7-5X3+22=7-5X3+4=7-15+4=7-3.75=325

1.2.4 Exercises

Find the decimal equivalent of 110110.101,.

Find the binary and octal (base eight) equivalents
of the decimal number 16321. Obtain a simple
rule that relates these two representations of the
number, and hence write down the octal equivalent
of 1011100101101,,.

Find the binary and octal equivalents of the
decimal number 30.6. Does the rule obtained in
Question 2 still apply?

Use binary arithmetic to evaluate

(a) 100011.011, + 1011.001,

(b) 111.10011, X 10.111,

Simplify the following expressions, giving the
answers with positive indices and without brackets:
(@) 2°x27* (b) 22 +27* (c) @)

(d) 31/3 X 35/3 (C) (36)7”2 (f) 163/4

The expression 7 — 2 X 3* 4+ 8 may be evaluated
using the usual implicit rules of precedence. It
could be rewritten as ((7 — (2 X (3%)) + 8) using
brackets to make the precedence explicit. Similarly

rewrite the following expressions in fully bracketed
form:

(@) 21 +4 X3 +2
(b) 17 — 6"

() 4X22=7+6X2
(d 2X3—6+4+3"

Express the following in the form x + y\2 with x
and y rational numbers:

(@) (7+ 5027
(©) (T + 5\2)

(b) (2 +1\2)*
@) V(5 - 3\2)
Show that

1 _a-byc
a+bJc a* -b*

Hence express the following numbers in the form
x + yw/n where x and y are rational numbers and n is
an integer:

1 .y 232

@ 757 ® 570
4243 2+ 445
© 733 @ s

Find the difference between 2 and the squares of

137 17 41 99

(a) Verity that successive terms of the sequence
stand in relation to each other as m/n does to
(m + 2n)/(m + n).

(b) Verify that if m/n is a good approximation to
\2 then (m + 2n)/(m + n) is a better one, and that
the errors in the two cases are in opposite directions.

(c) Find the next three terms of the above sequence.
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1.2.5

Example 1.8

Solution

Inequalities

The number line (Figure 1.1) makes explicit a further property of the real numbers —
that of ordering. This enables us to make statements like ‘seven is greater than two’ and
“five is less than six’. We represent this using the comparison symbols

>, ‘greater than’
<, ‘less than’

It also makes obvious two other comparators:

=, ‘equals’
#, ‘does not equal’

These comparators obey simple rules when used in conjunction with the arithmetical
operations. For any four numbers a, b, ¢ and d:

(a<bandc<d) implies a+c<b+d (1.2a)
(a<bandc>d) implies a—c<b-—d (1.2b)
(a<bandb <c) implies a<c (1.2¢)

a<b implies a+c¢<b+c (1.2d)
(a<bandc>0) implies ac <bc (1.2¢)
(@a<bandc <0) implies ac> bc (1.2f)
(a<band ab > 0) implies é > % (1.2g)

Show, without using a calculator, that V2 4+ V3 > 2(Ye6).

By squaring we have that
(2+32=2+22V3+3=5+2V6

Also
V6 =24 <25 =5

implying that 5 > 2V6. Thus
(V2 +V3)* > 216 + 2V6 = 46

and, since V2 +\3isa positive number, it follows that

V2 4 V3 > @) = 2(6)
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1.2.6 Modulus and intervals

Example 1.9

Solution

Figure 1.2
Illustration of

|x — 43| =58.

Example 1.10

Solution

The size of a real number x is called its modulus (or absolute value) and is denoted by
|x| (or sometimes by mod(x)). Thus

x (x=0) 13
Ix= —-x (x<0) (13)

where the comparator = indicates ‘greater than or equal to’. (Likewise < indicates ‘less
than or equal to’.)

Geometrically | x| is the distance of the point representing x on the number line from
the point representing zero. Similarly |x — /| is the distance of the point representing
x on the number line from that representing a.

The set of numbers between two distinct numbers, a and b say, defines an open
interval on the real line. This is the set {x:a < x < b, x in R} and is usually denoted by
(a, b). (Set notation will be fully described later (see Chapter 6); here {x:P} denotes the
set of all x that have property P.) Here the double-sided inequality means that x is greater
than a and less than b; that is, the inequalities a < x and x < b apply simultaneously. An
interval that includes the end points is called a closed interval, denoted by [a, b], with

[a, b] = {x:a < x < b, xin R}

Note that the distance between two numbers a and b might be eithera — bor b — a
depending on which was the larger. An immediate consequence of this is that

|a—b|=|b—a|

since a is the same distance from b as b is from a.

Find the values of x so that

|x— 43| =58

|x — 4.3| = 5.8 means that the distance between the real numbers x and 4.3 is 5.8 units,
but does not tell us whether x > 4.3 or whether x < 4.3. The situation is illustrated in
Figure 1.2, from which it is clear that the two possible values of x are —1.5 and 10.1.

distance
5.8

distance
5.8

|
|
| 4
T

S50 4.3 1

— e ——
O ¢ L

Express the sets (a) {x:|x — 3| < 5,xin R} and (b) {x:|x + 2| < 3, x in R} as intervals.

(a) |x — 3] < 5 means that the distance of the point representing x on the number line from
the point representing 3 is less than 5 units, as shown in Figure 1.3(a). This implies that

—5<x—3<5
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Adding 3 to each member of this inequality, using rule (1.2d), gives
—2<x<8

and the set of numbers satisfying this inequality is the open interval (—2, 8).

(b) Similarly |x + 2| < 3, which may be rewritten as |x — (—2)| < 3, means that the
distance of the point x on the number line from the point representing —2 is less than
or equal to 3 units, as shown in Figure 1.3(b). This implies

—3=sx+2=<3
Subtracting 2 from each member of this inequality, using rule (1.2d), gives
—S5=sx=<1
and the set of numbers satisfying this inequality is the closed interval [—5, 1].
It is easy (and sensible) to check these answers using spot values. For example, put-

ting x = —4 in (b) gives | —4 + 2| < 3 correctly. Sometimes the sets |x + 2| < 3 and
|x + 2| < 3 are described verbally as ‘lies in the interval x equals —2 £ 3’.

| | | A | | I I I I I I | iy |

Figure 1.3 — T 1

(a) The open interval 5 4 3 -2 -1 0 1 2 3 4 5 6 7 9
(=2, 8). (b) The closed (a)

interval [—5, 1]. | | A | | | | | K | | | | | |

T T T | | | | | T T T I | T T

-7 -6 -5 -4 -3 2 -1 0 1 2 3 4 5 6 7

We note in passing the following results. For any two real numbers x and y:

oy = [x[ |y (1.4a)
|x| <afora>0, implies —a<x<a (1.4b)
|x + y| < |x| + |y|. known as the ‘triangle inequality’ (1.4c)
1(x+y) =\(xy), whenx=0andy=0 (1.4d)

Result (1.4d) is proved in Example 1.11 below and may be stated in words as

the arithmetic mean%(x + y) of two positive numbers x and y is greater
than or equal to the geometric mean\(xy). Equality holds only when y = x.

Results (1.4a) to (1.4c) should be verified by the reader, who may find it helpful to
try some particular values first, for example setting x = —2 and y = 3 in (1.4c).
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Example 1.11

Prove that for any two positive numbers x and y, the arithmetic—geometric inequality

T+ y) = (xy)
holds.

Deduce that x + )]7 = 2 for any positive number x.
We have to prove that %(x +y) - \/(xy) is greater than or equal to zero. Let E denote
the expression (x + y) — 2\/(xy). Then
E X [(x +y) + 2Vl = (& + y) = 400)
(see Example 1.13)

E=x"+2xy +y* — 4xy

which is greater than zero unless x = y. Since (x + y) + 2\/(xy) is positive, this implies

E=0or %(x + y) = \(xy). Setting y = ;17, we obtain

or

1.2.7 Exercises

10  Show that (V5 + V13)’ > 34 and determine 12
without using a calculator the larger of V5 + V13

and \3 + V19.

11  Show the following sets on number lines and

express them as intervals:
(@) {x|x—4]=<6)
© {x|2x—1|<7}

(b) {x:|x+3|<2}
() {x]+x+3]<3)

Show the following intervals on number lines and
express them as sets in the form {x: | ax + b| <c}
or {x:|ax + b| < c}:

(@ (1,7 (b) [—4, —2]
© (17,26) (@ [-3. 7]
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13 Given that a < b and ¢ < d, which of the

14

(a) A journey is completed by travelling for the first

following statements are always true? half of the #ime at speed v, and the second half at

@ a—c<b-—-d ®b)a—-—d<b-c

(c) ac < bd

In each case either prove that the statement is
true or give a numerical example to show it can

be false.

If, additionally, a, b, ¢ and d are all greater
than zero, how does that modify your

answer?

speed v,. Find the average speed v, for the journey in
terms of v, and v,.

(d) 1 < 1 (b) A journey is completed by travelling at speed v,

b a for half the distance and at speed v, for the second
half. Find the average speed v, for the journey in
terms of v, and v,.

Deduce that a journey completed by travelling
at two different speeds for equal distances will take
longer than the same journey completed at the same
two speeds for equal times.

The average speed for a journey is the distance
covered divided by the time taken.

1.3

Example 1.12

Algebra

The origins of algebra are to be found in Arabic mathematics as the name suggests,
coming from the word aljabara meaning ‘combination’ or ‘re-uniting’. Algorithms
are rules for solving problems in mathematics by standard step-by-step methods.
Such methods were first described by the ninth-century mathematician Abu Ja’far
Mohammed ben Musa from Khwarizm, modern Khiva on the southern border of
Uzbekistan. The Arabic al-Khwarizm (‘from Khwarizm’) was Latinized to algorithm
in the late Middle Ages. Often the letter x is used to denote an unassigned (or free)
variable. It is thought that this is a corruption of the script letter ~ abbreviating the
Latin word res, thing. The use of unassigned variables enables us to form mathematical
models of practical situations as illustrated in the following example. First we deal with
a specific case and then with the general case using unassigned variables.

The idea, first introduced in the seventeenth century, of using letters to represent
unspecified quantities led to the development of algebraic manipulation based on the
elementary laws of arithmetic. This development greatly enhanced the problem-solving
power of mathematics — so much so that it is difficult now to imagine doing mathematics
without this resource.

A pipe has the form of a hollow cylinder as shown in Figure 1.4. Find its mass when

(a) its length is 1.5 m, its external diameter is 205 mm, its internal diameter is 160 mm
and its density is 5500 kgm™?;

(b) its length is [ m, its external diameter is D mm, its internal diameter is d mm and its
density is p kgm . Notice here that the unassigned variables I, D, d, p are pure num-
bers and do not include units of measurement.
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Solution

External
diameter

Internal

'
v
'
'
'
I ——————
'

e 4

——

diameter =

Cs )

Figure 1.4
Cylindrical pipe
of Example 1.12.

1.3.1

Figure 1.5
Illustration of

(a + b)* = a* + 2ab

+ b2

A

33U

(a) Standardizing the units of length, the internal and external diameters are 0.16 m and
0.205 m respectively. The area of cross-section of the pipe is

0.257(0.205* — 0.160%) m*

(Reminder: The area of a circle of diameter D is £D%4.)
Hence the volume of the material of the pipe is

0.257(0.205* — 0.160%) X 1.5m’
and the mass (volume X density) of the pipe is
0.25 X 5500 X (0.205* — 0.160%) X 1.5kg

Evaluating this last expression by calculator gives the mass of the pipe as 106kg to the
nearest kilogram.

(b) The internal and external diameters of the pipe are d/1000 and D/1000 metres,
respectively, so that the area of cross-section is

0.257(D* — d*)/1 000000 m*
The volume of the pipe is
0.2571(D* — d*)/10°m®
Hence the mass M kg of the pipe of density p is given by the formulae

M = 0.257pl(D* — d*/10° = 2.57pl(D + d)(D — d) X 107

Algebraic manipulation

Algebraic manipulation made possible concise statements of well-known results, such as
(a + b)Y =a*+ 2ab + b* (1.5)

Previously these results had been obtained by a combination of verbal reasoning and
elementary geometry as illustrated in Figure 1.5.

o
(P
i a a

! 7

b ab b*

]
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Example 1.13

Solution

Figure 1.6
Illustration of ab =
+l(@ + by — (a = b)].

Example 1.14

Solution

Prove that
ab =*[(a + b)* — (a — b)"]
Given 70 = 4900 and 36> = 1296, calculate 53 X 17.

Since
(a+ b}=a*+2ab + b*
we deduce
(a—b)}=a*—2ab + b*
and
(a + b)> — (a — b)* = 4ab
and
ab =%[(a + b)* — (a — b)*]
The result is illustrated geometrically in Figure 1.6. Setting a = 53 and b = 17, we have
53 X 17 =+[70* — 36%] = 901

This method of calculating products was used by the Babylonians and is sometimes called
‘quarter-square’ multiplication. It has been used in some analogue devices and simulators.

| a <P |
= (i I
b ab
Ny ab a
(a—by
a ab
ab b
o | | -l -
[ b [ 7 |
Show that

(a+b+cyP=a+b*+ P+ 2ab+ 2bc + 2ca

Rewriting a + b + c as (a + b) + ¢ we have
((a+b)+c)=(a+ b+ 2a+ b)c+* using (1.5a)
=a* + 2ab + b* + 2ac + 2bc + c*
=d + b’ + ¢ + 2ab + 2bc + 2ac
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Example 1.15  Verify that
x+pl+qg—p =xX+2px+gq
and deduce that
ronemfse 2 e
ax*+bx+c=a|x+—| tc——
2a 4a
Solution (x +p)? = x>+ 2px + p?
so that
x+pil+g—p'=x*+2px+g
Working in the reverse direction is more difficult
) , . b c
ax*+bx+c=a|lx"+—x+—
a a
., b C .. o, S
Comparing x* + —x + — with x* + 2px + ¢, we can identify
a a
b N
—=2p and ‘= q
a a
Thus we can write
ax>* + bx +c=al(x + p?’+q — p*
wherep:iandq:£
2a a
giving
, ( b jZ c B
ax>+bx+c=alx+—| +a|———
2a a 4a*
b Y b
=alx+—| +c——
( 2aj da
This algebraic process is called ‘completing the square’.
We may summarize the results so far
(a + b)? = a* + 2ab + b* (1.5a)
(a — b)?=a*— 2ab + b* (1.5b)
a* — b* = (a + b)a — b) (1.5¢)
b Y b
a2+bx+c=a(x+—) e — (1.5d)
2a 4a

As shown in the previous examples, the ordinary rules of arithmetic carry over

to the

generalized arithmetic of algebra. This is illustrated again in the following example.
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Example 1.16

Solution

Example 1.17

Solution

Express as a single fraction

1 2 3

a) ———+=

()12 3 4
1 2 3

- +
x+Dx+2) x+1 x+2

(b)

(a) The lowest common denominator of these fractions is 12, so we may write

1 2 3 1-8+9

12 3 4 12
2 1

“12 6

(b) The lowest common multiple of the denominators of these fractions is (x + 1)(x + 2),
SO wWe may write

1 3 2 N 3
x+Dx+2) x+1 x+2
1 a 2(x +2) N 3(x+1)

=(x+1)(x+2) x+Dx+2) (x+Dx+2)
C1=2(x+2) +3(x + 1)
x+Dx+2)
1-2x—-4+3x+3
T G+hx+2)

_ X
S+ D(x+2)

Use the method of completing the square to manipulate the following quadratic expres-
sions into the form of a number + (or —) the square of a term involving x.

(a) x> +3x—7 (b) 5 —4x — x*
() 3x*—=5x+4 (d) 1+2x—2x?

Remember (a + b)* = a* + 2ab + b*.
(a) To convert x* + 3x into a perfect square we need to add (%)2. Thus we have
X243 =T=[(x+2?-(3)?*1-7
AR
(b) 5—4x—x*=5—(4x + x)
To convert x* + 4x into a perfect square we need to add 2°. Thus we have

X Hdx=(x+2>*-2°
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Example 1.18

Solution

and
S—4x—x*=5—-[(x+2>—2]=9—(x +2)
(c) First we ‘take outside’ the coefficient of x*:
3x* —5x+ 4 =3(x’-3x+3)
Then we rearrange
R BT
so that 3x* — 5x + 4 =3[(x — 2= 2 + 3] =3[(x = 2)*+ £].
(d) Similarly
l+2x—2x*=1-2(x*—x)
and
¥-x=(x-1P-1
so that
l+2x—22=1-2[(x -3 -4 =3-2x- D)2

The reader should confirm that these results agree with identity (1.5d).

The number 45 can be factorized as 3 X 3 X 5. Any product of numbers from 3, 3 and
5 is also a factor of 45. Algebraic expressions can be factorized in a similar fashion. An
algebraic expression with more than one term can be factorized if each term contains
common factors (either numerical or algebraic). These factors are removed by division
from each term and the non-common factors remaining are grouped into brackets.

Factorize xz + 2yz — 2y — x.

There is no common factor to all four terms so we take them in pairs:
xz2+2yz =2y —x=x+2y)z— 2y +x)
= (x+ 2z — (x + 2y)
=@ +2Ez -1
Alternatively, we could have written
Xz +2yz — 2y —x = (xz — x) + 2yz — 2y)
=xz=D+2—-1
(x+ 2y — 1)

to obtain the same result.

In many problems we are able to facilitate the solution by factorizing a quadratic
expression ax® + bx + ¢ ‘by hand’, using knowledge of the factors of the numerical
coefficients a, b and c.
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Example 1.19

Solution

Comment

Factorize the expressions

(a) x* + 12x + 35 (b) 2x> +9x — 5

(a) Since
x+a)x+pB)=x"+(a+B)x+ap

we examine the factors of the constant term of the expression
35=5X7=35X1

and notice that 5 + 7 = 12 while 35 + 1 = 36. So we can choose @ = 5 and 8 = 7 and
write

X+ 12x+35=x+5x+7)
(b) Since
(mx + a)(nx + B) = mnx* + (na + mP)x + af

we examine the factors of the coefficient of x* and of the constant to give the coefficient
of x. Here

2=2X1land -5=(-5X1=5X(—1)
and we see that
2X5+1X(=1)=9
Thus we can write
2x—Dx+5=2*+9%x—5

It is sensible to do a ‘spot-check’ on the factorization by inserting a sample value of x,
for example x = 1

(Ho6)y=2+9-5

Some quadratic expressions, for example x> + y*, do not have real factors.

The expansion of (¢ + b)* in (1.5a) is a special case of a general result for (a + b)"
known as the binomial expansion. This is discussed again later (see Sections 1.3.6 and
7.7.2). Here we shall look at the cases forn =0, 1,..., 6.

Writing these out, we have

(@+b'=1

(a+b'=a+b

(a+ b)=a*+ 2ab + b*

(a + b)’ = a® + 3a°b + 3ab* + b’

(a + b)* = a* + 4a’b + 6a*b* + 4ab® + b*

(a + b)Y’ = ad® + 5a*b + 10a°b* + 10a°b® + Sab* + b°

(a + b)® = a® + 6a°b + 15a*b* + 20a°b® + 15a°b* + 6ab® + b°
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Figure 1.7
Pascal’s triangle.

Example 1.20

Solution

(a+b)’=1 1

N
/\ /\
/\ /\ /\
/\ /\ /\ /\
1/\5/\10/\10/\5/\1

(@a+b)=a+b
(a+b)Y=a*+2ab+ b*
(a+b)Y=ad’+3d’b+3ab*>+ b’
(a+b) =a*+ 4a’b + 6a°D> + 4ab® + b*

(a+ by =d’+5a*b + 10a’b’> + 10a°b* + 5ab* + b’

This table can be extended indefinitely. Each line can easily be obtained from the
previous one. Thus, for example,

(a + b)* = (a + b)a + by’
= a(d@® + 3a’b + 3ab* + b*) + b(a® + 3a*b + 3ab* + b°)
=da' + 3a’b + 3d’h* + ab® + &’b + 3a’b* + 3ab® + b*
=d* + 4a’b + 6a°b* + 4ab’ + b*

The coefficients involved form a pattern of numbers called Pascal’s triangle, shown
in Figure 1.7. Each number in the interior of the triangle is obtained by summing the
numbers to its right and left in the row above, as indicated by the arrows in Figure 1.7.
This number pattern had been discovered prior to Pascal by the Chinese mathematician
Jia Xian (in the mid-eleventh century).

Expand

4
(a) (2x + 3y)? (b) 2x — 3)° (c) (2x - l)

X

(a) Here we use the expansion
(a + b)> =a* + 2ab + b*
with @ = 2x and b = 3y to obtain
(2x + 3y)* = (2x)* + 22x)(3y) + (3y)*
=4x* + 12xy + 9y?
(b) Here we use the expansion
(a + b)* = a’® + 3a’°h + 3ab* + b’
with @ = 2x and b = —3 to obtain
(2x — 3)* = 8x? — 36x* + 54x — 27
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(c) Here we use the expansion
(a + b)* = a* + 4a’b + 6a** + 4ab’® + b*

with a = 2x and b = —1/x to obtain

-t

(2x0)" + 42x)*(—1/x) + 6(2x)*(— Ux)* + 4(2x)(—1/x)* + (= /x)*

16x* — 32x> + 24 — 8/x> + 1/x*

1.3.2 Exercises

15  Simplify the following expressions: 30 cm *
(a) x* X x7* b) x*+x* () D |
3)° '
@ 2P X " () @HT (@) | — {hem  \20em
2+x |
I
2 1Y
2 _ 4 13
® W(x xj (b (Sx - 2x1,3) {
2x2 12 ) (azb)l/z Figure 1.8
(1) T () @)
o 19  An open container is made from a sheet of
(k) (4ab’) cardboard of size 200 mm X 300 mm using a
simple fold, as shown in Figure 1.9. Show
16  Factorize that the capacity C'ml of the box is given by
(@ x’y —xy’ C = x(150 — x)(100 — x)/250
(b) X’yz — xy’z + 2xyz*
L 300 mm .
(¢) ax — 2by — 2ay + bx —r : : -
(d) x*+3x — 10
@ & =57 () 8l =y | |
17 Simplify 200 mm
X*-x-12 x—1 2
) ————— b - e I _
@ x*-16 ®) *-2x-3 x+1 [T A w2 I
i [N X mm
(© ! + ! - 3 3 : \,\ -
43010 2 +17x + 60 ==
xmm
(d) Bx + 2y)(x — 2y) + 4xy .
Figure 1.9 Sheet of cardboard of Question 19.
18 Anisosceles trapezium has non-parallel sides of

length 20 cm and the shorter parallel side is 30 cm, 20
as illustrated in Figure 1.8. The perpendicular

distance between the parallel sides is #cm.

Show that the area of the trapezium is

h(30 + V(400 — h*)cm?’.

Rearrange the following quadratic expressions by
completing the square.

(@ x> +x—12
(©) (x— 1" — (2x — 3)

(b) 3 —2x + x*
@ 1+ 4x—x?
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1.3.3

Example 1.21

Solution

Figure 1.10
The cone and cylinder
of Example 1.21.

Equations, inequalities and identities

It commonly occurs in the application of mathematics to practical problem solving that
the numerical value of an expression involving unassigned variables is specified and we
have to find the values of the unassigned variables which yield that value. We illustrate
the idea with the elementary examples that follow.

A hollow cone of base diameter 100 mm and height 150 mm is held upside down and
completely filled with a liquid. The liquid is then transferred to a hollow circular cylin-
der of base diameter 80 mm. To what height is the cylinder filled?

The situation is illustrated in Figure 1.10. The capacity of the cone is
1 (base area) X (perpendicular height)

Thus the volume of liquid contained in the cone is
1 (50%)(150) = 1250007 mm®

The volume of the liquid in the circular cylinder is
(base area) X (height) = 7 (40*)h mm’

where 4 mm is the height of the liquid in the cylinder. Equating these quantities (assuming
no liquid is lost in the transfer) we have

1600 7h = 1250007
This equation enables us to find the value of the unassigned variable h:
h = 1250/16 = 78.125

Thus the height of the liquid in the cylinder is 78 mm to the nearest millimetre.

) 100 mm !

|

150 mm

hmm
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Example 1.22

Solution

Example 1.23

In the previous example we made use of the formula for the volume V of a cone of base
diameter D and height H. We normally write this as

V = 5nDH

understanding that the units of measurement are compatible. This formula also tells us
the height of such a cone in terms of its volume and base diameter

12
H = v
rD?
This type of rearrangement is common and is generally described as ‘changing the
subject of the formula’.

A dealer bought a number of equally priced articles for a total cost of £120. He sold all
but one of them, making a profit of £1.50 on each article with a total revenue of £135.
How many articles did he buy?

Let n be the number of articles bought. Then the cost of each article was £(120/n).
Since (n — 1) articles were sold the selling price of each article was £(135/(n — 1)).
Thus the profit per item was

£{ 135 _@}
n-—1 n

which we are told is equal to £1.50. Thus

s 120, g,
n-—1 n

This implies

135n — 120(n — 1) = 1.50(n — 1)n
Dividing both sides by 1.5 gives

90n —80(n — 1) =n*—n
Simplifying and collecting terms we obtain

n—11ln—80=0

This equation for n can be simplified further by factorizing the quadratic expression
on the left-hand side

(n—16)(n +5) =0

This implies either n = 16 or n = —5, so the dealer initially bought 16 articles (the
solution n = —5 is not feasible).

Using the method of completing the square (1.5a), obtain the formula for finding the
roots of the general quadratic equation

ax*+bx+c=0 (a#0)
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Solution

Comments

Figure 1.11
The circuit for the
telephone line fault.

Dividing throughout by a gives

b c
+=x+—=0
a a

Completing the square leads to

giving

( b )2 b2 ¢ b*-4dac

4?2 a 4dP
which on taking the square root gives

b \(b? - 4ac) \(b* - 4ac)
—=+——"> or ——
2a 2a 2a

X+

or

P —b £ (b* — 4ac)
2a

Here the 4 symbol provides a neat shorthand for the two solutions.

1.6)

(a) The formula given in (1.6) makes clear the three cases: where for b* > 4ac
we have two real roots to the equation, for b* < 4ac we have no real roots, and for

b* = 4ac we have one repeated real root.

(b) The condition for equality of the roots of a quadratic equation occurs in practical
applications, and we shall illustrate this in Example 2.48 after considering the trigono-

metric functions.

(c) The quadratic equation has many important applications. One, which is of historical
significance, concerned the electrical engineer Oliver Heaviside. In 1871 the telephone
cable between England and Denmark developed a fault caused by a short circuit under
the sea. His task was to locate that fault. The cable had a uniform resistance per unit
length. His method of solution was brilliantly simple. The situation can be represented

schematically as shown in Figure 1.11.

England A B Denmark

= Short circuit
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Example 1.24

Solution

In the figure the total resistance of the line between A and B is a ohms and is known;
x and y are unknown. If we can find x, we can locate the distance along the cable where
the fault has occurred. Heaviside solved the problem by applying two tests. First he
applied a battery, having voltage E, at A with the circuit open at B, and measured the
resulting current ;. Then he applied the same battery at A but with the cable earthed
at B, and again measured the resulting current /,. Using Ohm’s law and the rules for
combining resistances in parallel and in series, this yields the pair of equations

E=1x+y)

-1
1 1
E=I{x+(—+ ) }
y a-—x

Writing b = E/I, and ¢ = E/I,, we can eliminate y from these equations to obtain an
equation for x:

x> =2cx+cla+b)—ab=0
which, using (1.6), has solutions
x=ct\la— b — o)

From his experimental data Heaviside was able to predict accurately the location of
the fault.

In some problems we have to find the values of unassigned variables such that the
value of an expression involving those variables satisfies an inequality condition (that
is, it is either greater than, or alternatively less than, a specified value). Solving such
inequalities requires careful observance of the rules for inequalities (1.2a—1.2g) set out
previously (see Section 1.2.5).

Find the values of x for which

1
3—x

<2 1.7)

(a) When 3 — x > 0, that is x < 3, we may, using (1.2e), multiply (1.7) throughout by
3 — xto give

1 <23 —x)
which, using (1.2d, e), reduces to
x < %

so that (1.7) is satisfied when both x < 3 and x < % are satisfied; that is, x < %
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Comment

Example 1.25

Solution

Example 1.26

Solution

(b) When 3 — x < 0, that is x > 3, we may, using (1.2f), multiply (1.7) throughout by
3 — xto give

1>23 —x)

which reduces to x > % so that (1.7) is also satisfied when both x > 3 and x > %; that is,

x> 3.
Thus inequality (1.7) is satisfied by values of x in the ranges x > 3 and x < %

A common mistake made is simply to multiply (1.7) throughout by 3 — x to give the
answer x < %, forgetting to consider both cases of 3 — x > 0 and 3 — x < 0. We shall
return to consider this example from the graphical point of view in Example 2.36.

Find the values of x such that

X+2x+2>50

Completing the square on the left-hand side of the inequality we obtain
(x+ 17 +1>50

which gives
(x+ 1)>>49

Taking the square root of both sides of this inequality we deduce that
either(x + )< —T7or(x +1)>7

Note particularly the first of these inequalities. From these we deduce that
X+ 2x+2>50forx<—8orx>6

The reader should check these results using spot values of x, say x = —10 and x = 10.

A food manufacturer found that the sales figure for a certain item depended on its
selling price. The company’s market research department advised that the maximum
number of items that could be sold weekly was 20000 and that the number sold
decreased by 100 for every Ip increase in its price. The total production cost consisted
of a set-up cost of £200 plus 50p for every item manufactured. What price should the
manufacturer adopt?

The data supplied by the market research department suggests that if the price of the
item is p pence, then the number sold would be 20000 — 100p. (So the company would
sell none with p = 200, when the price is £2.) The production cost in pounds would
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Example 1.27

Solution

be 200 + 0.5 X (number sold), so that in terms of p we have the production cost £C
given by

C =200 + 0.5(20000 — 100p)

The revenue £R accrued by the manufacturer for the sales is (number sold) X (price),
which gives

R = (20000 — 100p)p/100
(remember to express the amount in pounds). Thus, the profit £P is given by

P=R-C

(20000 — 100p)p/100 — 200 — 0.5(20000 — 100p)
= —p* + 250p — 10200
Completing the square we have
P =125 — (p — 125)> — 10200
= 5425 — (p — 125)°

Since (p — 125)* = 0, we deduce that P < 5425 and that the maximum value of P is
5425. To achieve this weekly profit, the manufacturer should adopt the price £1.25.

It is important to distinguish between those equalities that are valid for a restricted
set of values of the unassigned variable x and those that are true for all values of x.
For example,

x—=5x+7) =0
is true only if x = 5 or x = —7. In contrast
x=5x+7)=x*+2x—35 (1.8)

is true for all values of x. The word ‘equals’ here is being used in subtly different ways.
In the first case ‘=" means ‘is numerically equal to’; in the second case ‘=" means ‘is
algebraically equal to’. Sometimes we emphasize the different meaning by means of
the special symbol =, meaning ‘algebraically equal to’. (However, it is fairly common
practice in engineering to use ‘=’ in both cases.) Such equations are often called identi-
ties. Identities that involve an unassigned variable x as in (1.8) are valid for all values
of x, and we can sometimes make use of this fact to simplify algebraic manipulations.

Find the numbers A, B and C such that
X+2x—35=Ax—-1*+Bx—-1D+C

Method (a): Since x* + 2x — 35 = A(x — 1)* + B(x — 1) + C it will be true for any
value we give to x. So we choose values that make finding A, B and C easy.
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Example 1.28

Solution

Choosing x=0 gives —35=A—-B+C
Choosing x =1 gives —32=C
Choosing x =2 gives —27=A+B+C

So we obtain C = —32, withA — B= —3and A + B=5.HenceA = 1 and B = 4 to give
the identity

X+ —-35=x—- 1P +4x—-1)—32
Method (b): Expanding the terms on the right-hand side, we have
X+2x—35=Ax"+B—-2A)x+A—-B+C

The expressions on either side of the equals sign are algebraically equal, which means
that the coefficient of x* on the left-hand side must equal the coefficient of x* on the
right-hand side and so on. Thus

1=A
2=B—2A
-35=A-B+C
Hence we find A = 1, B = 4 and C = —32, as before.

Note: Method (a) assumes that a valid A, B and C exist. Sometimes a combination of
methods (a) and (b) is helpful.

Find numbers A, B and C such that

)C2

Cc
=Ax+B+ ,
x—1 x -1 x# 1

Expressing the right-hand side as a single term, we have

x? _(Ax+ B -D+C
x—-1 x—=1

which, with x # 1, is equivalent to
X*=A@x+Bx—-1D+C

Choosing x=0 gives 0=-B+ C
Choosing x=1 gives 1 =C
Choosing x =2 gives 4=2A+ B+ C

Thus we obtain

C=1,B=1and A = 1, yielding
2

=x+1+
x—1 x—1
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21

22

23

24

25

26

27

1.3.4 Exercises

Rearrange the following formula to make s the as the original sheet. Find the ratio of
subject the sides of the original page.
s+t . .
m=p \/ 28  Find the values of x for which
s—1
1
" @ 2 <2 D) <1
Given u = _find ¢ in terms of « and x. X 2-x
X =1t
©X=2_5 @ 3 -1
Solve for 7 x -1 =2 x+4
1 1 | 29  Find the values of x for which
11—t 1+1¢ <2+ |«
It 30 Prove that
2 2
3¢+ 3xc+x7 _ W (@) x>+ 3x— 10= — (1)
3¢+ 3yc+y* AV,
. (b) 18 4+ 4x — x> <22
find the positive value of ¢ when
4
x=4,y=6,V, =120,V, =315 (c)x+;>4 where x>0
Solve for p the equation (Hint: First complete the square of the left-hand
members.)
2p +1 L= 1 ’
p+5 p+l 31 Find the values of A and B such that
A rectangle has a perimeter of 30 m. If its length is (a) 1 = A " B
twice its breadth, find the length. x+Dx-2) x+1 x-2

. (b) 3x+2=Ax—1)+ Bkx —2)
(a) A4 paper is such that a half sheet has the same

shape as the whole sheet. Find the ratio of the © Sx+1 _ A2x+1)+B
lengths of the sides of the paper. N2+ x+ 1) = NG+ x+ 1)

(b) Foolscap paper is such that cutting off a square 32
whose sides equal the shorter side of the paper
leaves a rectangle which has the same shape 22 —=5x+ 12=Ax - 1)+ Bx—-1)+C

Find the values of A, B and C such that

1.3.5 Suffix and sigma notation

We have seen in previous sections how letters are used to denote general or unspecified
values or numbers. This process has been extended in a variety of ways. In particu-
lar, the introduction of suffixes enables us to deal with problems that involve a high
degree of generality or whose solutions have the flexibility to apply in a large number of
situations. Consider for the moment an experiment involving measuring the temperature
of an object (for example, a piece of machinery or a cooling fin in a heat exchanger) at
intervals over a period of time. In giving a theoretical description of the experiment we
would talk about the total period of time in general terms, say 7 minutes, and the time
interval between measurements as 4 minutes, so that the total number 7 of time intervals
would be given by T/h. Assuming that the initial and final temperatures are recorded
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Figure 1.12
Experimental results:
temperature against
lapsed time.

there are (n + 1) measurements. In practice we would obtain a set of experimental
results, as illustrated partially in Figure 1.12.

Lapsed time (minutes) 0 5 10 15 ... 170 175 180

Temperature (°C) 97.51 96.57 93.18 9153 ... 2643 2491 23.57

Here we could talk about the twenty-first reading and look it up in the table. In the
theoretical description we would need to talk about any one of the (n + 1) temperature
measurements. To facilitate this we introduce a suffix notation. We label the times at
which the temperatures are recorded #,, t,, f,, ..., t,, Where f, corresponds to the time
when the initial measurement is taken, 7, to the time when the final measurement is
taken, and

th=ty+hty,=1t,+2h,..,t, =t +nh

so that 7, = ¢, + T. We label the corresponding temperatures by 6,, 6,, 6,, ..., 6,. We can
then talk about the general result 6, as measuring the temperature at time z,.

In the analysis of the experimental results we may also wish to manipulate the data
we have obtained. For example, we might wish to work out the average value of the tem-
perature over the time period. With the thirty-seven specific experimental results given in
Figure 1.12 it is possible to compute the average directly as

(97.51 + 96.57 + 93.18 + 91.53 + ... + 23.57)/37
In general, however, we have
@y +0,+6,+...+6)n+1)

A compact way of writing this is to use the sigma notation for the extended summation
0, + 6, +...+ 6, We write

291( (2 is the upper-case Greek letter sigma)
k=0

to denote
0, +60,+6,+..+80,
Thus

3
Zek:00+‘91 + 6, + 0,
k=0

and

10

Z@:@+@+&+%+@+%

k=5

The suffix k appearing in the quantity to be summed and underneath the sigma symbol
is the ‘counting variable’ or ‘counter’. We may use any letter we please as a counter,
provided that it is not being used at the same time for some other purpose. Thus
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Example 1.29

Solution

1.3.6

3

3 3
36, =0,+0,+6,+6,=>06,=>6
i=0 n=0 Jj=0

Thus, in general, if a,, a,, a,, ..., a, is a sequence of numbers or expressions, we write

n
Z“ak=ao+a1 +a,+...+a,
k=0

Givenay,= 1,a, =5,a,=2,a;=7,a,= —land b, =0,b, =2,b, = =2, by = 11,
b, = 3, calculate

4 3 3 4
(a) Zak (b) Z a; (© 2 a,b, (d) Z bt
k=0 i=2 k=1 k=0

4
@ Ya=a+a+a+a+a,

k=0
Substituting the given values for a, (k = 0, ..., 4) gives

4
Na=1+5+2+7+(-1)=14

k=0
3

(b) 2ai=a2+a3=2+7=9
i=2

3
(©) Y= ab, + azb, + ashy = (5 X 2) + (2 X (=2)) + (7 X 11) = 83
k=1

4
(d) Zbk=b§+bf+b§+b§+b§=0+4+4+121+9=138

k=0

Factorial notation and the binomial expansion
The product of integers
I X2X3X..Xn=nXm—-1)Xn-—2)X..X1

has a special notation and name. It is called n factorial and is denoted by n!. Thus with
nl=nn—Dn —2)...(1)
two examples are

51=5X4X3X2X1 and 8! =8XT7TX6X5X4X3X2X1

Notice that 5! = 5(4!) so that we can write in general

nl=m-1!Xn
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Example 1.30

Solution

This relationship enables us to define 0!, since 1! = 1 X 0! and 1! also equals 1. Thus 0!
is defined by

0l'=1

Evaluate

(a) 4! (b) 3! X 2! (c) 6! (d) 72! X 5)

(a) 4! =4X3X2X1=24

(b) 3! X2l =@BX2XDHX2X1)=12
(c) 6! =6 X5X4X3X2X1=1720
Notice that 2! X 3! # (2 X 3)..

7 TX6X5X4AX3IX2XT  TX6

d = =
()2!><5! 2X1Xx5x4x3x2x%x1 2

21

Notice that we could have simplified the last item by writing
71 =7X6X(5)
then
7 Tx6x(S) Tx6

= = =21
2! x5! 2! x 5! 2x1

An interpretation of n! is the total number of different ways it is possible to arrange n
different objects in a single line. For example, the word SEAT comprises four different
letters, and we can arrange the letters in 4! = 24 different ways.

SEAT EATS ATSE TSEA
SETA EAST ATES TSAE
SAET ESAT AETS TESA
SATE ESTA AEST TEAS
STAE ETSA ASET TAES
STEA ETAS ASTE TASE

This is because we can choose the first letter in four different ways (S, E, A or T).
Once that choice is made, we can choose the second letter in three different ways,
then we can choose the third letter in two different ways. Having chosen the first three
letters, the last letter is automatically fixed. For each of the four possible first choices,
we have three possible choices for the second letter, giving us twelve (4 X 3) possible
choices of the first two letters. To each of these twelve possible choices we have two
possible choices of the third letter, giving us twenty-four (4 X 3 X 2) possible choices
of the first three letters. Having chosen the first three letters, there is only one possible
choice of last letter. So in all we have 4! possible choices.
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Example 1.31

Solution

In how many ways can the letters of the word REGAL be arranged in a line, and in how
many of those do the two letters A and E appear in adjacent positions?

The word REGAL has five distinct letters, so they can be arranged ina linein 5! = 120
different ways. To find out in how many of those arrangements the A and E appear
together, we consider how many arrangements can be made of RGL(AE) and
RGL(EA), regarding the bracketed terms as a single symbol. There are 4! possible
arrangements of both of these, so of the 120 different ways in which the letters
of the word REGAL can be arranged, 48 contain the letters A and E in adjacent
positions.

The introduction of the factorial notation facilitates the writing down of many com-
plicated expressions. In particular it enables us to write down the general form of the
binomial expansion discussed earlier (see Section 1.3.1). There we wrote out long-hand

the expansion of (¢ + b)" forn = 0, 1, 2, ..., 6 and noted the relationship between
the coefficients of (@ + b)" and those of (a + b)"~', shown clearly in Pascal’s triangle of
Figure 1.7.

If

(@a+ b '=ca" '+ ca" b+ c,a" b + ca" b+ .+, b
and
(a+ b)'=dya"+ da"'b+ dya"?b*+ ...+ d,_ab""" + d b"
then, as described previously when developing Pascal’s triangle,
co=dy=1, di=c tcy, dy=c,+c, dy=c;+tc, ...
and in general
d=c +c._

It is easy to verify that this relationship is satisfied by

n! (-1 - (n - 1!
rin—r)! Mn—1-n" 7 =D -1-r+1)!

=

and it can be shown that the coefficient of ¢" 'b" in the expansion of (a + b)" is

n! nn—-Dn-2)...(n—r+1)

An-r  rr=Dr-2)..0) a.9)

This is a very important result, with many applications. Using it we can write down the
general binomial expansion

n !
@+by =Y —"—amrpy (1.10)

morin —r)!
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n!
The coefficient ﬁ is called the binomial coefficient and has the special notation
ri(n—r)!

ny n!
r) rl(n —r)!

This may be written as "C,. Thus we may write

@+byr=Y U) amh" (1.11)

r=0

which is referred to as the general binomial expansion.
Example 1.32  Expand the expression (2 + x)°.

Solution  Setting @ = 2 and b = x in the general binomial expansion we have

-3
2+ x) =2 . 277"y’

r=0

“lof e [relee <G+ (e )

= (1)(2°) + 5)2Hx + (10)2H)x* + (10)2H)x* + 5)2)x* + 1x°

] ! !
since > :izl, > :i:S, > :izloandsoon.Thus
0 015! 1 114! 2 213!

(2 + x)° = 32 + 80x + 80x* + 40x + 10x* + x°

1.3.7 Exercises

33 Givenay=2,a,=—1l,a,=—4,a;,=5,a,=3 34 Evaluate
and by =1,b,=1,b,=2,by= -1, b, =2, (a) 5! () 34l () TVB! X 41)
calculate

5 9 8
@Yo Y of) ©) ©f
kzo i? 35  Using the general binomial expansion expand
© Y ab, @ b the following expressions:
. "=0 @ @=3 0 x+y)
() 2x+3yY (d GBx+ 2y
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y axis
P(x.y)
Yl ¢
oH— "
origin X X axis
Figure 1.13

Cartesian coordinates.

1.4.2

/Ol X

Figure 1.14
Straight line.

=Y

ol \

Figure 1.15
Perpendicular lines.

Geometry

Coordinates

In addition to the introduction of algebraic manipulation another innovation made in the
seventeenth century was the use of coordinates to represent the position of a point P on
a plane as shown in Figure 1.13. Conventionally the point P is represented by an ordered
pair of numbers contained in brackets thus: (x, y). This innovation was largely due to the
philosopher and scientist René Descartes (1596—1650) and consequently we often refer
to (x, y) as the cartesian coordinates of P. This notation is the same as that for an open
interval on the number line introduced previously (see Section 1.2.1), but has an entirely
separate meaning and the two should not be confused. Whether (x, y) denotes an open
interval or a coordinate pair is usually clear from the context.

Straight lines

The introduction of coordinates made possible the algebraic description of the plane
curves of classical geometry and the proof of standard results by algebraic methods.
Consider, for example, the point P lying on the line AB as shown in Figure 1.14. Let
P divide AB in the ratio A:1 — A. Then AP/AB = A and, by similar triangles,
AP PQ AQ
AB BC AC
Let A, B and P have coordinates (x,, y,), (x;, ¥;) and (x, y) respectively; then from the diagram

AQ =x —x, AC=x; = x5, PQ=y =y, BC=y, — y,

Thus

BC AC Yi—Y X — X

from which we deduce, after some rearrangement,

Y1~ D
y === = xo) + o 1.12)
X1 = Xo
which represents the equation of a straight line passing through two points (x,, y,) and
(xl’ yl)

More simply, the equation of a straight line passing through the two points having
coordinates (x,, y,) and (x,, y;) may be written as

y=mx + c (1.13)
_ Y1 = Yo YoX1 — iXo
m=--—. - - ¢ = -
where X —x, S the gradient (slope) of the line and P is the

intercept on the y axis.

A line perpendicular to y = mx + ¢ has gradient —1/m as shown in Figure 1.15. The
gradient of the line PQ is OP/QO = m. The gradient of the line PR is —OP/OR. By
similar triangles POQ, POR we have OP/OR = OQ/OP = 1/m.



1.4 GEOMETRY 37

Example 1.33

Solution

Example 1.34

Solution
3 5
T y=as3

x intercept

(0] 3 X
3
y
7 intercept
Figure 1.16

The straight line
2y =3x — 5.

Equations of the form
y=mx+c

represent straight lines on the plane and, consequently, are called linear equations.

Find the equation of the straight line that passes through the points (1, 2) and (3, 3).

Taking (x,, y,) = (1, 2) and (x,, y,) = (3, 3)

D=V _3-2_

1
slope of line = =—
X —x 3-1 2

so from formula (1.12) the equation of the straight line is
y=3@x—1)+2
which simplifies to

—1 3
y=axt+y

Find the equation of the straight line passing through the point (3, 2) and parallel to the
line 2y = 3x + 4. Determine its x and y intercepts.

Writing 2y = 3x + 4 as
y :%x +2

we have from (1.13) that the slope of this line is 3. Since the required line is parallel to
this line, it will also have a slope of 3. (The slope of the line perpendicular to it is —%.
Thus from (1.13) it has equation

y=3x+c

To determine the constant ¢, we use the fact that the line passes through the point (3, 2),
so that

2 =%+C giving c =—§

Thus the equation of the required line is

y=3x-3 or 2y =3x—35
The y intercept is ¢ = —3.
To obtain the x intercept we substitute y = 0, giving x = %, so that the x intercept
e S
18 3
The graph of the line is shown in Figure 1.16.
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1.4.3 Circles

A circle is the planar curve whose points are all equidistant from a fixed point
called the centre of the circle. The simplest case is a circle centred at the origin with
radius r, as shown in Figure 1.17(a). Applying Pythagoras’ theorem to triangle OPQ
we obtain

4y =

(Note that r is a constant.) When the centre of the circle is at the point (a, b), rather than
the origin, the equation of the circle is

(x—ay+(y—b’=r (1.14a)

obtained by applying Pythagoras’ theorem in triangle O'PN of Figure 1.17(b). This
expands to

X+ y P —=2ax —2by + (@ +b*—1rH=0

Figure 1.17 y
(a) A circle of centre YA
origin, radius r. (b) A P(x.y)
circle of centre (a, b),
radius r. P(x,y)
&£l .
(e} a X
(a) (b)
Thus the general equation
¥+ +2h+2gy+c=0 (1.14b)

represents a circle having centre (—f, —g) and radius \(f> + g* — ¢). Notice that the
general circle has three constants f, g and c¢ in its equation. This implies that we need
three points to specify a circle completely.

Example 1.35  Find the equation of the circle with centre (1, 2) and radius 3.

Solution  Using Pythagoras’ theorem, if the point P(x, y) lies on the circle then from (1.14a)
=D+ (y—-2=3
Thus
=2+ 1+y -4y +4=9
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giving the equation as

X*+y —2x—4y—4=0

Example 1.36 Find the radius and the coordinates of the centre of the circle whose equation is

2*+ 2y —=3x+5y+2=0

Solution  Dividing through by the coefficient of x* we obtain
XAy =3x+3y+1=0
Now completing the square on the x terms and the y terms separately gives

3y2 52 _ 9 25 _1
= +O+) =+ -l=1%

Hence, from (1.14a), the circle has radius (3\/2)/4 and centre (3/4, —5/4).

Example 1.37 Find the equation of the circle which passes through the points (0, 0), (0, 2), (4, 0).

Solution  Method (a): From (1.14b) the general equation of a circle is
X+ y +2/+2gy+c=0

Substituting the three points into this equation gives three equations for the unknowns
f, g and c.

Thus substituting (0, 0) gives ¢ = 0, substituting (0, 2) gives 4 + 4g + ¢ = 0 and
substituting (4, 0) gives 16 + 8f + ¢ = 0. Solving these equations gives g = —1,f= —2
and ¢ = 0, so the required equation is

XAy —4x—2y=0

Method (b): From Figure 1.18 using the geometrical properties of the circle, we see
that its centre lies at (2, 1) and since it passes through the origin its radius is V5. Hence,
from (1.14a), its equation is

(x =272+ (y — 1)* = (V5

Figure 1.18 y
The circle of
Example 1.37.

(0,0) 5(2,0>' 4,0) x
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Example 1.38

Solution

Example 1.39

Solution

which simplifies to
X+y P —d4x—2y=0

as before.

Find the point of intersection of the line y = x — 1 with the circle x* + y* — 4y — 1 = 0.

Substituting y = x — 1 into the formula for the circle gives
XHE—1)=4x—-1)—-1=0

which simplifies to
¥*=3x+2=0

This equation may be factored to give
x—2)x—1)=0

so that x = 1 and x = 2 are the roots. Thus the points of intersection are (1, 0) and (2, 1).

Find the equation of the tangent at the point (2, 1) of the circle x* + y* — 4y — 1 = 0.

A tangent is a line, which is the critical case between a line intersecting the circle in
two distinct points and its not intersecting at all. We can describe this as the case when
the line cuts the circle in two coincident points. Thus the line, which passes through
(2, 1) with slope m

y=mx-—2)+1

is a tangent to the circle when the equation
X+ mx—2)+ 1P —4mx—-2)+1]1—-1=0

has two equal roots. Multiplying these terms out we obtain the equation
m + x> —2mQ@m + Dx+4m* +m—1)=0

The condition for this equation to have equal roots is (using comment (a) of Example
1.23)

Adm*(2m + 1)* = 4[4(m* + m — D(m* + 1)]
This simplifies to
m—4m+4=0 or (m—2>=0

giving the result m = 2 and the equation of the tangent y = 2x — 3.
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37

38

1.4.4 Exercises

Find the equation of the straight line

(a) with gradient % passing through the point (2, 1);

(b) with gradient —2 passing through the point
(=2,3);

(c) passing through the points (1, 2)

89

40

Find the equation of the circle with centre (—2, 3)
that passes through (1, —1).

Find the equation of the circle that passes through
the points (1, 0), (3, 4) and (5, 0).

and (3, 7); 41  Find the equation of the tangent to the circle
(d) passing through the points (5, 0) X+ —4x—-1=0
and (0, 3);

(e) parallel to the line 3y — x = 5, passing
through (1, 1);

(f) perpendicular to the line 3y — x = 5, passing
through (1, 1).

Write down the equation of the circle with centre
(1, 2) and radius 5.

Find the radius and the coordinates of the centre of

42

43

at the point (1, 2).

A rod, 50 cm long, moves in a plane with its ends
on two perpendicular wires. Find the equation of the
curve followed by its midpoint.

The feet of the altitudes of triangle A(0, 0), B(b, 0)
and C(c, d) are D, E and F respectively. Show
that the altitudes meet at the point O(c, c(b—c)/d).

the circle with equation

X+y +d4x—6y=3

Further, show that the circle through D, E and F also
passes through the midpoint of each side as well as

the midpoints of the lines AO, BO and CO.

1.4.5

Conics

The circle is one of the conic sections (Figure 1.19) introduced around 200 BC by
Apollonius, who published an extensive study of their properties in a textbook that
he called Conics. He used this title because he visualized them as cuts made by a ‘flat’
or plane surface when it intersects the surface of a cone in different directions, as illus-
trated in Figures 1.20(a—d). Note that the conic sections degenerate into a point and
straight lines at the extremities, as illustrated in Figures 1.20(e—g). Although at the time
of Apollonius his work on conics appeared to be of little value in terms of applications,
it has since turned out to have considerable importance. This is primarily due to the fact
that the conic sections are the paths followed by projectiles, artificial satellites, moons
and the Earth under the influence of gravity around planets or stars. The early Greek
astronomers thought that the planets moved in circular orbits, and it was not until 1609
that the German astronomer Johannes Kepler described their paths correctly as being
elliptic, with the Sun at one focus. It is quite possible for an orbit to be a curve other
than an ellipse. Imagine a meteor or comet approaching the Sun from some distant
region in space. The path that the body will follow depends very much on the speed
at which it is moving. If the body is small compared to the Sun, say of planetary
dimensions, and its speed relative to the Sun is not very high, it will never escape and
will describe an elliptic path about it. An example is the comet observed by Edmond
Halley in 1682 and now known as Halley’s comet. He computed its elliptic orbit,
found that it was the same comet that had been seen in 1066, 1456, 1531 and 1607, and
correctly forecast its reappearance in 1758. It was most recently seen in 1986. If the
speed of the body is very high, its path will be deviated by the Sun but it will not orbit
for ever around the Sun. Rather, it will bend around the Sun in a path in the form of a
hyperbola and continue on its journey back to outer space. Somewhere between these
two extremes there is a certain critical speed that is just too great to allow the body to
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Figure 1.19 Y YA

Standard equations

of the four conics. P Gh /
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z \/F _ /
—ale /1o ae | a ale Focus “lo ale a ae X
@/ Centre
Directrix FP=¢PG Directrix Directrix Directrix FP = ¢PG
. x2 yZ x2 y2
(¢) Ellipse: 7 + e = (d) Hyperbola: Z 7 =1
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(a) Circle: section
perpendicular
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(d) Hyperbola: section
slanted to axis of
cone

Figure 1.20

(e) Point

(b) Parabola: section
parallel to generator
of cone

ZIX

and

eccentricity e > 1

22

(c) Ellipse: section
slanted to axis

of cone

(f) Two
intersecting
lines

(g) Line
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Figure 1.21
Orbital path.

(a)

(b)

Figure 1.22
(a) Car headlamp.

(b) Radio telescope.

Critical speed

Ellipse
Parabola

Hyperbola

orbit the Sun, but not great enough for the path to be a hyperbola. In this case the path
is a parabola, and once again the body will bend around the Sun and continue on its
journey into outer space. These possibilities are illustrated in Figure 1.21.

Examples of where conic sections appear in engineering practice include the following.

(a) A parabolic surface, obtained by rotating a parabola about its axis of symmetry,
has the important property that an energy source placed at the focus will cause rays
to be reflected at the surface such that after reflection they will be parallel. Reversing
the process, a beam parallel to the axis impinging on the surface will be reflected onto
the focus (Example 8.6). This property is involved in many engineering design pro-
jects: for example, the design of a car headlamp or a radio telescope, as illustrated in
Figures 1.22(a) and (b) respectively. Other examples involving a parabola are the path
of a projectile (Example 2.39) and the shape of the cable on certain types of suspension
bridge (Example 8.69).

(b) A ray of light emitted from one focus of an elliptic mirror and reflected by the
mirror will pass through the other focus, as illustrated in Figure 1.23. This property is
sometimes used in designing mirror combinations for a reflecting telescope. Ellipses
have been used in other engineering designs, such as aircraft wings and stereo styli.
Elliptical pipes are used for foul and surface water drainage because the elliptical
profile is hydraulically efficient. As described earlier, every planet orbits around the
Sun in an elliptic path with the Sun at one of its foci. The planet’s speed depends on
its distance from the Sun; it speeds up as it nears the Sun and slows down as it moves
further away. The reason for this is that for an ellipse the line drawn from the focus
S (Sun) to a point P (planet) on the ellipse sweeps out areas at a constant rate as P moves
around the ellipse. Thus in Figure 1.24 the planet will take the same time to travel the
two different distances shown, assuming that the two shaded regions are of equal area.

(c) Consider a supersonic aircraft flying over land. As it breaks the sound barrier
(that is, it travels faster than the speed of sound, which is about 750 mph (331.4ms™ ")),
it will create a shock wave, which we hear on the ground as a sonic boom — this being
one of the major disadvantages of supersonic aircraft. This shock wave will trail behind

|
P, planet |

S | Planet

Focus O Focus

Figure 1.23 Reflection of a ray by an
elliptic mirror. Figure 1.24 Regions of equal area.
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Figure 1.25
Sonic boom.

Example 1.40

Solution

P(x.y)

A P,
(a,0)

Figure 1.26
Path of Example 1.40.

V7

Land

the aircraft in the form of a cone with the aircraft as vertex. This cone will intersect
the ground in a hyperbolic curve, as illustrated in Figure 1.25. The sonic boom will hit
every point on this curve at the same instant of time, so that people living on the curve
will hear it simultaneously. No boom will be heard by people living outside this curve,
but eventually it will be heard at every point inside it.

Figure 1.19 illustrates the conics in their standard positions, and the corresponding
equations may be interpreted as the standard equations for the four curves. More gener-
ally the conic sections may be represented by the general second-order equation

ax® + by* + 2fx + 2gy + 2hxy + ¢ =0 (1.15)

Provided its graph does not degenerate into a point or straight lines, (1.15) is representa-
tive of

e acircleif a=b#0andh =0
e aparabola if h = ab
e an ellipse if h* < ab
e ahyperbolaif A’ > ab

The conics can be defined mathematically in a number of (equivalent) ways, as we
shall illustrate in the next examples.

A point P moves in such a way that its total distance from two fixed points A and B is
constant. Show that it describes an ellipse.

The definition of the curve implies that AP + BP = constant with the origin O being
the midpoint of AB. From symmetry considerations we choose x and y axes as shown
in Figure 1.26. Suppose the curve crosses the x axis at P,, then

AP, + BP, = AB + 2AP, = 20P,
so the constant in the definition is 20P, and for any point P on the curve
AP + BP = 20P,

Let P = (x, y), Py = (a, 0), P, = (—a, 0), A = (¢, 0) and B = (—¢, 0). Then using
Pythagoras’ theorem we have

AP =[(x = ) + 7]
BP =\[(x + ¢)* + ]
so that the defining equation of the curve becomes

VI = o + ¥ 1 +\[(x + o) + '] = 2a
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Example 1.41

Solution

L, AY

P—

NG /

M(—a,0) [ O[* F(a,0) x

L/

Figure 1.27
Path of point in
Example 1.41.

To obtain the required equation we need to ‘remove’ the square root terms. This can
only be done by squaring both sides of the equation. First we rewrite the equation as

VIGe = o + ¥ = 2a =[x + &) + ]
and then square to give
x—c)P+y ' =4a" —da[(x + ) + Y] + (x + o) +»*
Expanding the squared terms we have
X =2cx+ A+ y =4a> — da[(x + o) + ¥ ]+ x* + 2cx + 7+ y?
Collecting together terms, we obtain
al(x + ¢)* +y ] =a* + cx
Squaring both sides again gives
a’[x* + 2ex + & + y*H = a* + 2d’cx + AP
which simplifies to
(@ — Ax*+ ay* = ad (@ — A
Noting that a > ¢ we write a* — ¢* = b?, to obtain
bx* + a*y* = a’b’
which yields the standard equation of the ellipse

2

"

bl

pr

+

::N|

The points A and B are the foci of the ellipse, and the property that the sum of the focal
distances is a constant is known as the string property of the ellipse since it enables us
to draw an ellipse using a piece of string.

For a hyperbola, the difference of the focal distances is constant.

A point moves in such a way that its distance from a fixed point F is equal to its
perpendicular distance from a fixed line. Show that it describes a parabola.

Suppose the fixed line is LL" shown in Figure 1.27, choosing the coordinate axes shown.
Since PF = PN for points on the curve we deduce that the curve bisects FM, so that
if Fis (a, 0), then M is (—a, 0). Let the general point P on the curve have coordinates
(x, y). Then by Pythagoras’ theorem

PF = \[(x — a)’ +’]

Also PN = x + a, so that PN = PF implies that
x+a=\[x—a)l+y]

Squaring both sides gives

(x+a’=x-—al+y*
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Example 1.42

Solution

which simplifies to
y? = 4ax

the standard equation of a parabola. The line LL' is called the directrix of the parabola.

(a) Find the equation of the tangent at the point (1, 1) to the parabola y = x*. Show that
it is parallel to the line through the points (%, %), (%, %), which also lie on the parabola.

(b) Find the equation of the tangent at the point (a, a*) to the parabola y = x*. Show that
it is parallel to the line through the points (a — h, (a — h)?), (a + h, (a + h)?).

(a) Consider the general line through (1, 1). It has equation y = m(x — 1) + 1. This
cuts the parabola when

mx—1)+1=x*
that is, when
X—mx+m—1=0
Factorizing this quadratic, we have
x—DHx—m+1)=0

giving the roots x = l andx = m — 1
These two roots are equal when m — 1 = 1; that is, when m = 2. Hence the equation
of the tangentis y = 2x — 1.
The line through the points (4, 1), (3, %) has gradient
1
4 _ 2

1
2

ENN-}

[SI8)

so that it is parallel to the tangent at (1, 1).

(b) Consider the general line through (a, a?). It has equation y = m(x — a) + a* This
cuts the parabola y = x* when

m(x —a) + a* = x*
that is, where

X —mx+ma—a =0
This factorizes into

x—a(x—m+a)=0

giving the roots x = a and x = m — a. These two roots are equal when a = m — a; that
is, when m = 2a. Thus the equation of the tangent at (a, a°) is y = 2ax — a*.
The line through the points (@ — h, (a — h)?), (a + h, (a + h)*) has gradient

(a+h? —(a—h? a*+2ah+ h* —(a* - 2ah + h?)

(a+h)—(a—-h) 2h

4
=Lh=2a
2h
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So the symmetrically disposed chord through (a — h, (a — h)?), (a + h, (a + h)?) is
parallel to the tangent at x = a. This result is true for all parabolas.

1.4.6 Exercises

Find the coordinates of the focus and the 45 For the ellipse 25x* + 16y = 400 find the
equation of the directrix of the parabola whose coordinates of the foci, the eccentricity,

equation is

the equations of the directrices and the
lengths of the semi-major and semi-minor

3y? = 8x
axes.
The chord which passes through the focus parallel
to the directrix is called the latus rectum of the 46  For the hyperbola 9x> — 16y® = 144 find the
parabola. Show that the latus rectum of the above coordinates of the foci and the vertices and
parabola has length 8/3. the equations of its asymptotes.

1.5.1

Number and accuracy

Arithmetic that only involves integers can be performed to obtain an exact answer
(that is, one without rounding errors). In general, this is not possible with real num-
bers, and when solving practical problems such numbers are rounded to an appropriate
number of digits. In this section we shall review the methods of recording numbers,
obtain estimates for the effect of rounding errors in elementary calculations and discuss
the implementation of arithmetic on computers.

Rounding, decimal places and significant figures

The Fundamental Laws of Arithmetic are, of course, independent of the choice of
representation of the numbers. Similarly, the representation of irrational numbers will
always be incomplete. Because of these numbers and because some rational numbers have
recurring representations (whether the representation of a particular rational number is
recurring or not will of course depend on the number base used — see Example 1.2d),
any arithmetical calculation will contain errors caused by truncation. In practical problems
it is usually known how many figures are meaningful, and the numbers are ‘rounded’
accordingly. In the decimal representation, for example, the numbers are approximated
by the closest decimal number with some prescribed number of figures after the decimal
point. Thus, to two decimal places (dp),

=314 and 5 =042
and to five decimal places

T =3.14159 and 3 = 041667
Normally this is abbreviated to

m=3.14159 (5dp) and -5 = 0.41667 (5dp)
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Figure 1.28

Similarly
V2 = 1.4142 (4dp) and % = 0.667 (3dp)

In hand computation, by convention, when shortening a number ending with a five we
‘round to the even’. For example,

1.2345 and 1.2335

are both represented by 1.234 to three decimal places. In contrast, most calculators and
computers would ‘round up’ in the ambiguous case, giving 1.2345 and 1.2335 as 1.235
and 1.234 respectively.

Any number occurring in practical computation will either be given an error bound
or be correct to within half a unit in the least significant figure (sf). For example,

n=314+0005 or m=3.14

Any number given in scientific or mathematical tables observes this convention. Thus

8o = 9.806 65
implies

8o = 9.806 65 £ 0.000 005
that is,

9.806645 < g, < 9.806 655

as illustrated in Figure 1.28,

9.806 63 9.806 64 9.806 65 9.806 66
| | t ” |
| | & : i |

Sometimes the decimal notation may create a false impression of accuracy. When
we write that the distance of the Earth from the Sun is ninety-three million miles, we
mean that the distance is nearer to 93 000000 than to 94 000 000 or to 92 000 000, not
that it is nearer to 93 000000 than to 93000001 or to 92999 999. This possible mis-
interpretation of numerical data is avoided by stating the number of significant figures,
giving an error estimate or using scientific notation. In this example the distance d miles
is given in the forms

d = 93000000 (2sf)
or

d = 93000000 £ 500000
or

d=93x10

Notice how information about accuracy is discarded by the rounding-off process. The value
ninety-three million miles is actually correct to within fifty thousand miles, while the
convention about rounded numbers would imply an error bound of five hundred thousand.

The number of significant figures tells us about the relative accuracy of a number
when it is related to a measurement. Thus a number given to 3sf is relatively ten times
more accurate than one given to 2sf. The number of decimal places, dp, merely tells us
the number of digits including leading zeros after the decimal point. Thus
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Example 1.43

Solution

1.5.2

Example 1.44

2321 and 0.00005971

both have 4sf, while the former has 3dp and the latter 8dp.

It is not clear how many significant figures a number like 3200 has. It might be 2, 3
or 4. To avoid this ambiguity it must be written in the form 3.2 X 10* (when it is correct
to 2sf) or 3.20 X 10° (3sf) or 3.200 X 10° (4sf). This is usually called scientific nota-
tion. It is widely used to represent numbers that are very large or very small. Essentially,
a number x is written in the form

x =a X 10"

where 1 < |a| < 10 and 7 is an integer. Thus the mass of an electron at rest is 9.11 X

10~ g, while the velocity of light in a vacuum is 2.9978 X 10"°cms™".

Express the number 150.4152

(a) correctto 1,2 and 3 decimal places; (b) correctto 1, 2 and 3 significant figures.

(a) 1504152 = 1504  (ldp)
15042 (2dp)

150.415 (3dp)

1.504 152 X 10
2X 10 (1sf)
1.5 X 10 (2sf)
1.50 X 10° (3sf)

(b) 150.4152

Estimating the effect of rounding errors

Numerical data obtained experimentally will often contain rounding errors due to
the limited accuracy of measuring instruments. Also, because irrational numbers and
some rational numbers do not have a terminating decimal representation, arithmetical
operations inevitably contain errors arising from rounding off. The effect of such errors
can accumulate in an arithmetical procedure and good engineering computations will
include an estimate for it. This process has become more important with the widespread
use of computers. When users are isolated from the computational chore, they often
fail to develop a sense of the limits of accuracy of an answer. Indeed, with certain calcu-
lations the error can balloon as the calculation proceeds. In this section we shall develop
the basic ideas for such sensitivity in analyses of calculations.

Compute
(a) 3.142 + 4.126 (b) 5.164 — 2.341 (c) 235.12 X 0.531

Calculate estimates for the effects of rounding errors in each answer and give the
answer as a correctly rounded number.
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7.265

Solution

7.267

(a) 3.142 + 4.126 = 7.268

Because of the convention about rounded numbers, 3.142 represents all the numbers a
between 3.1415 and 3.1425, and 4.126 represents all the numbers b between 4.1255 and
4.1265. Thus if a and b are correctly rounded numbers, their sum a + b lies between
¢, = 7.2670 and ¢, = 7.2690. Rounding ¢, and ¢, to 3dp gives ¢, = 7.267 and
¢, =17.269. Since these disagree, we cannot give an answer to 3dp. Rounding ¢, and ¢, to 2dp
gives ¢, = 7.27 and ¢, = 7.27. Since these agree, we can give the answer to 2dp; thus
a + b =17.27, as shown in Figure 1.29.

7269 7.270 7.275
|

A

E

A 2ZZ] a + b lies somewhere in here

 — 1 Numbers represented by 7.268

NN Numbers represented by 7.27

Figure 1.29

(b) 5.164 — 2.341 = 2.823

Applying the same ‘worst case’ analysis to this implies that the difference lies between
5.1635 — 2.3415 and 5.1645 — 2.3405; that is, between 2.8220 and 2.8240. Thus the
answer should be written 2.823 £ 0.001 or, as a correctly rounded number, 2.82.

(c) 235.12 X 0.531 = 124.84872

Clearly, writing an answer with so many decimal places is unjustified if we are using
rounded numbers, but how many decimal places are sensible? Using the ‘worst case’
analysis again, we deduce that the product lies between 235.115 X 0.5305 and 235.125
X 0.5315; that is, between ¢, = 124.728 507 5 and ¢, = 124.968 937 5. Thus the answer
should be written 124.85 £ 0.13. In this example, because of the place where the number
occurs on the number line, ¢, and ¢, only agree when we round them to 3sf (Odp). Thus
the product as a correctly rounded number is 125.

A competent computation will contain within it estimates of the effect of round-
ing errors. Analysing the effect of such errors for complicated expressions has to be
approached systematically.

Definitions
(a) The error in a value is defined by
error = approximate value — true value

This is sometimes termed the dead error. Notice that the true value equals the approxi-
mate value minus the error.

(b) Similarly the correction is defined by
true value = approximate value + correction
so that

correction = —error
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Example 1.45

Solution

(c) The error modulus is the size of the error, |error|, and the error bound (or
absolute error bound) is the maximum possible error modulus.

(d) The relative error is the ratio of the size of the error to the size of the true value:

€rror

relative error =

value
The relative error bound is the maximum possible relative error.

(e) The percent error (or percentage error) is 100 X relative error and the percent
error bound is the maximum possible per cent error.

In some contexts we think of the true value as an approximation and a remainder.
In such cases the remainder is given by

remainder = —error

= correction

Give the absolute and relative error bounds of the following correctly rounded numbers

(@ 2992  (b) —0.01523  (c) 3.9 X 10"

(a) The number 29.92 is given to 2dp, which implies that it represents a number within
the domain 29.92 4 0.005. Thus its absolute error bound is 0.005, half a unit of the least
significant figure, and its relative error bound is 0.005/29.92 or 0.000 17.

(b) The absolute error bound of —0.01523 is half a unit of the least significant
figure, that is 0.000 005. Notice that it is a positive quantity. Its relative error bound is
0.000005/0.01523 or 0.00033.

(¢) The absolute error bound of 3.9 X 10" is 0.05 X 10 = 5 X 10® and its relative
error bound is 0.05/3.9 or 0.013.

Usually, because we do not know the true values, we estimate the effects of error in
a calculation in terms of the error bounds, the ‘worst case’ analysis illustrated in
Example 1.44. The error bound of a value v is denoted by ¢,.

Consider, first, the sum ¢ = a + b. When we add together the two rounded numbers
a and b their sum will inherit a rounding error from both @ and b. The true value of a
lies between a — €, and a + ¢, and the true value of b lies between b — g, and b + ¢,.
Thus the smallest value that the true value of c can haveisa — ¢, + b — g,, and its largest
possible valueis a + ¢, + b + ¢,. (Remember that ¢, and g, are positive.) Thusc =a + b
has an error bound

g, =¢g, T g

as illustrated in Figure 1.30. A similar ‘worst case’ analysis shows that the difference
d = a — b has an error bound that is the sum of the error bounds of a and b:

d=a— b, g,=¢,t g
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Figure 1.30

a—eg, b—eg,
g, teg,
a b
g, g,
ate, b+eg,

Thus for both addition and subtraction the error bound of the result is the sum of the
individual error bounds.

Next consider the product p = a X b, where a and b are positive numbers. The smallest
possible value of p will be equal to the product of the least possible values of a and b;
that is,

p=>(a—g)X(b—g)
Similarly
p<(a+te)X(@d+eg)
Thus, on multiplying out the brackets, we obtain
ab — ag, — be, + g5, <p <ab + ag, + be, + g,¢,

Ignoring the very small term &,¢,, we obtain an estimate for the error bound of the product:
g, = ag, + beg,, p=aXb

Dividing both sides of the equation by p, we obtain

& _& &

p a b
Now the relative error of a is defined as the ratio of the error in a to the size of a.
The above equation connects the relative error bounds for a, b and p:

rp=ra+rb

Here r, = ¢,/|a| allowing for a to be negative, and so on.
A similar worst case analysis for the quotient ¢ = a/b leads to the estimate

g = Iy AF 7

Thus for both multiplication and division, the relative error bound of the result is the
sum of the individual relative error bounds.

These elementary rules for estimating error bounds can be combined to obtain more
general results. For example, consider z = x% then r, = 2r,. In general, if z = x’, where
x is a rounded number and y is exact, then

r, = yr,
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Example 1.47

Solution

Evaluate 13.92 X 5.31 and 13.92 + 5.31.

Assuming that these values are correctly rounded numbers, calculate error bounds
for each answer and write them as correctly rounded numbers which have the greatest
possible number of significant digits.

13.92 X 531 = 73.9152; 13.92 + 5.31 = 2.621468927

Leta = 13.92 and b = 5.31; then r, = 0.00036 and r, = 0.00094, so that @ X b and
a + b have relative error bounds 0.00036 + 0.00094 = 0.0013. We obtain the absolute
error bound of a X b by multiplying the relative error bound by a X b. Thus the
absolute error bound of a X b is 0.0013 X 73.9152 = 0.0961. Similarly, the absolute
error bound of @ + b is 0.0013 X 2.6215 = 0.0034. Hence the values of @ X b and
a ~ b lie in the error intervals

73.9152 — 0.0961 < a X b < 73.9152 + 0.0961
and
2.6215 — 0.0034 < a + b < 2.6215 + 0.0034

Thus 73.8191 <a X b <74.0113 and 2.6181 < a + b < 2.6249.
From these inequalities we can deduce the correctly rounded values of @ X b and
a+b
aXb=74 and a~+b=262

and we see how the rounding convention discards information. In a practical context, it
would probably be more helpful to write

73.81 <a X b <74.02

and
2618 <a—+b<2625
Evaluate
6721 — 4931 x 71.28
89.45

Assuming that all the values given are correctly rounded numbers, calculate an error
bound for your answer and write it as a correctly rounded number.

Using a calculator, the answer obtained is

6.721 — 4931 x 7128 =2.791635216
89.45

To estimate the effect of the rounding error of the data, we first draw up a tree diagram
representing the order in which the calculation is performed. Remember that +, —, X
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Figure 1.31

47

(a)
Label Value Absolute error bound Relative error bound

b 4.931 — 0.0005 0.0005/4.931 = 0.0001 }
c 71.28 — 0.005 —  0.005/71.28 =0.000 OZ
P 351.481 68 0.000 17
d 89.45 — 0.005 —  0.005/89.45 =0.000 046_)
q 3.929 364 784 {0.0009 =0.00023%x3.9 -~ 0.00023
a 6.721 9_.0005
e 2.791635216 0.0014

(b)

and + are binary operations, so only one operation can be performed at each step.
Here we are evaluating

bXxc
d

a—

We calculate this as b X ¢ = p, then p +~ d = g and then a — ¢ = e, as shown in
Figure 1.31(a). We set this calculation out in a table as shown in Figure 1.31(b), where
the arrows show the flow of the error analysis calculation. Thus the value of e lies between
2.790235...and 2.793035..., and the answer may be written as 2.7916 &+ 0.0015 or as
the correctly rounded number 2.79.

The calculations shown in Figure 1.31 indicate the way in which errors may accumu-
late in simple arithmetical calculations. The error bounds given are rarely extreme and
their behaviour is ‘random’. This is discussed later in Example 13.31 in the work on
statistics.

1.5.3 Exercises

State the numbers of decimal places and significant 48  In a right-angled triangle the height is measured
figures of the following correctly rounded numbers: as 1 m and the base as 2 m, both measurements

(a) 980.665

-28 being accurate to the nearest centimetre. Using
(b) 9.11 X 10 .
Pythagoras’ theorem, the hypotenuse is calculated

(c) 2.9978 X 10" (d) 2.00 X 10% as 2.236 07 m. Is this a sensible deduction? What

e) 1.759 x 107

(f) 6.67 X 1078 other source of error will occur?
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49

50

51

52

53

Determine the error bound and relative error bound
for x, where

(@) x=35min+5s
(b) x =35min £4%
(c) x = 0.58 and x is correctly rounded to 2dp.

A value is calculated to be 12.9576, with a relative
error bound of 0.0003. Calculate its absolute error
bound and give the value as a correctly rounded

number with as many significant digits as possible.

Using exact arithmetic, compute the values of

the expressions below. Assuming that all the
numbers given are correctly rounded, find absolute
and relative error bounds for each term in the
expressions and for your answers. Give the
answers as correctly rounded numbers.

(a) 1.316 — 5.713 + 8.010
(b) 2.51 X 1.01
(c) 19.61 + 21.53 — 18.67

Evaluate 12.42 X 5.675/15.63, giving your answer
as a correctly rounded number with the greatest
number of significant figures.

Evaluate

a+b, a—b, aXxXb, alb

for a = 4.99 and b = 5.01. Give absolute and
relative error bounds for each answer.

54

55

56

Complete the table below for the computation
9.21 + (3.251 — 3.115)/0.112

and give the result as the correctly rounded answer
with the greatest number of significant figures.

Absolute Relative
Label Value  error bound error bound
a 3.251
b 3.115
a—>b
c 0.112
(a — b)lc
d 9.21
d+ (a — b)lc

Evaluate uv/(u + v) for u = 1.135 and v = 2.332,
expressing your answer as a correctly rounded
number.
Working to 4dp, evaluate
E=1—165++(1.65) — +(1.65)* + 5;(1.65)"

(a) by evaluating each term and then summing,
(b) by ‘nested multiplication’

E=1+1.65(-1+ 1.65(%+1.65(—¢ + 5;(1.65))))

Assuming that the number 1.65 is correctly rounded
and that all other numbers are exact, obtain error
bounds for both answers.

1.5.4 Computer arithmetic

The error estimate outlined in Example 1.44 is a ‘worst case’ analysis. The actual error
will usually be considerably less than the error bound. For example, the maximum error
in the sum of 100 numbers, each rounded to three decimal places, is 0.05. This would
only occur in the unlikely event that each value has the greatest possible rounding error.
In contrast, the chance of the error being as large as one-tenth of this is only about 1
in 20.

When calculations are performed on a computer the situation is modified a little by
the limited space available for number storage. Arithmetic is usually performed using
floating-point notation. Each number x is stored in the normal form

x = (sign)b"(a)

where b is the number base, usually 2 or 16, n is an integer, and the mantissa a is a
proper fraction with a fixed number of digits such that 1/b < a < 1. As there are a
limited number of digits available to represent the mantissa, calculations will involve
intermediate rounding. As a consequence, the order in which a calculation is performed
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57

may affect the outcome — in other words the Fundamental Laws of Arithmetic may no
longer hold! We shall illustrate this by means of an exaggerated example for a small
computer using a decimal representation whose capacity for recording numbers is lim-
ited to four figures only. In large-scale calculations in engineering such considerations
are sometimes important.

Consider a computer with storage capacity for real numbers limited to four figures;
each number is recorded in the form (£)10"(a) where the exponent 7 is an integer,
0.1 =< a <1 and a has four digits. For example,

= +10'(0.3142)
= —10%0.3333)
5764 = +10%0.5764)
—0.0009713 = —107%(0.9713)
5764213 = +107(0.5764)

B
[

W=

Addition is performed by first adjusting the exponent of the smaller number to that of
the larger, then adding the numbers, which now have the same multiplying power of 10,
and lastly truncating the number to four digits. Thus 7.182 + 0.053 81 becomes

+10'(0.7182) + 107'(0.5381) = 10'(0.7182) + 10'(0.005 381)
101(0.723 581)
10'(0.7236)

Witha = 31.68,b = —31.54 and ¢ = 83.21, the two calculations (a + b) + cand (a + ¢) + b
yield different results on this computer:

(a + b) + ¢ = 83.35, (a+c)+b=28334

Notice how the symbol ‘=" is being used in the examples above. Sometimes it means
‘equals to 4sf’. This computerized arithmetic is usually called floating-point arithmetic,
and the number of digits used is normally specified.

1.5.5 Exercises

Two possible methods of adding five numbers are
(((@a+b)+c)+d) te

by both methods. Explain any discrepancy in the
results.

and 58  Find (107%(0.3251) X 107°(0.2011)) and
(((e+d)+c)+b) +a (107'(0.2168) =+ 10*0.3211)) using four-digit
. . . . . floating-point arithmetic.
Using 4dp floating-point arithmetic, evaluate the
sum 59  Find the relative error resulting when four-digit

10'(0.1000) + 10'(0.1000) — 10°(0.5000)
+ 10°%0.1667) + 107'(0.4167)

floating-point arithmetic is used to evaluate

10%(0.1000) + 10%(0.1234) — 10%(0.1013)
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1.6 Engineering applications

In this section we illustrate through two examples how some of the results developed in
this chapter may be used in an engineering application.

Example 1.48 A continuous belt of length L m passes over two wheels of radii » and R m with their
centres a distance / m apart, as illustrated in Figure 1.32. The belt is sufficiently tight for
any sag to be negligible. Show that L is given approximately by

L=2[>—R-r1"*+nR+7r)

Find the error inherent in this approximation and obtain error bounds for L given the
rounded data R = 1.5, r = 0.5and [ = 3.5.

Figure 1.32
Continuous belt of
Example 1.48.

Solution  The length of the belt consists of the straight sections AB and CD and the wraps round
the wheels BC and DA. From Figure 1.32 it is clear that BT = OP = [ and ZOAB is
a right angle. Also, AT = AO — OT and OT = PB so that AT = R — r. Applying
Pythagoras’ theorem to the triangle TAB gives

AB® = 1> — (R — r)

Since the length of an arc of a circle is the product of its radius and the angle (measured
in radians) subtended at the centre (see (2.17)), the length of wrap DA is given by

Q2r — 20)R

where the angle is measured in radians. By geometry, 0 = % — ., so that
DA = 7R + 2Ra

Similarly, the arc BC = 7r — 2ra. Thus the total length of the belt is
L=2[*P—R-r]"+rnR+7r) +2R — Na

Taking the length to be given approximately by
L=2[P—R-r1"*+nR+7r)

the error of the approximation is given by —2(R — r)a, where the angle « is expressed
in radians (remember that error = approximation — true value). The angle « is found
by elementary trigonometry, since sin @« = (R — r)/l. (Trigonometric functions will be
reviewed later in Section 2.6.)
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Example 1.49

Figure 1.33 Optical
cable of Example 1.49.

Solution

For the (rounded) data given, we deduce, following earlier procedures (see of
Section 1.5.2), that for R = 1.5, r = 0.5 and [ = 3.5 we have an error interval for « of

sin”! (wj, sin”! (M) =[0.256,0.325]
3.55 3.45

Thus « = 0.29 £ 0.035, and similarly 2(R — r)a = 0.572 £ 0.111.
Evaluating the approximation for L gives

207 = (R = )] + @R + r) = 12.991 £ 0.478
and the corresponding value for L is
L =13.563 £0.589

Thus, allowing both for the truncation error of the approximation and for the rounding
errors in the data, the value 12.991 given by the approximation has an error interval
[12.974, 14.152]. Its error bound is the larger of | 12.991 — 14.152 | and | 12.991 — 12.974],
that is 1.16. Its relative error is 0.089 and its percent error is 8.9%, where the terminology
follows the definitions given earlier (see Section 1.5.2).

A cable company is to run an optical cable from a relay station, A, on the shore to an
installation, B, on an island, as shown in Figure 1.33. The island is 6 km from the shore
at its nearest point, P, and A is 9km from P measured along the shore. It is proposed
to run the cable from A along the shoreline and then underwater to the island. It costs
25% more to run the cable underwater than along the shoreline. At what point should
the cable leave the shore in order to minimize the total cost?

6 km

Optimization problems frequently occur in engineering and technology and often their
solution is found algebraically.

If the cable leaves the shore at D, a distance xkm from P, then the underwater
distance is \(x* + 36) km and the overland distance is (9 — x) km, assuming 0 < x < 9. If
the overland cost of laying the cable is £c per kilometre, then the total cost £C is given by

C(x) = [(9 — x) + 1.25V(x* + 36)]c
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We wish to find the value of x, 0 < x < 9, which minimizes C. To do this we first change

the variable x by substituting

)

such that x* + 36 becomes a perfect square:

K H36=36+90 -2+ /P

= 9(t + 1/1)*

Hence C(x) becomes

Cit) =19 — 3(t— 1/t) + 3.75( + 1/D)]c
=19 + 0.75(t + 9/t)]c

Using the arithmetic—geometric inequality x + y = 2\/(xy), see (1.4d), we know that

t+2>6
t

and that the equality occurs where ¢ = 9/f; that is, where ¢ = 3.

Thus the minimum cost is achieved where t = 3 and x = 3(3 — 1/3) = 8. Hence

the cable should leave the shore after laying the cable 1 km from its starting point at A.

1.7 Review exercises (1-25)

1

(a) A formula in the theory of ventilation is
0= VH \/ A’D?
K N A* + D?
Express A in terms of the other symbols.

(b) Solve the equation
1 2 3

x+2 x x-1

Factorize the following:

(@ ax —2x—a +2 (b) @® — b*+2bc —

(c) 4k> + 4kl + I — 9m* (d) p* — 3pq + 2¢°

(e) >+ Im+ In+ mn

(a) Two small pegs are 8 cm apart on the same
horizontal line. An inextensible string of length
16 cm has equal masses fastened at either end and
is placed symmetrically over the pegs. The middle

point of the string is pulled down vertically until
it is in line with the masses. How far does each
mass rise?

(b) Find an ‘acceptable’ value of x to three
decimal places if the shaded area in Figure 1.34
is 10 square units.

10
(2x—=35)

N

Figure 1.34 Shaded area of Question 3(b).
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The impedance Z ohms of a circuit containing
a resistance R ohms, inductance L henries and
capacity C farads, when the frequency of the
oscillation is n per second, is given by

Y Y

(a) Make L the subject of this formula.

(b) If n =50, R = 15 and C = 10 * show that there
are two values of L which make Z = 20 but only
one value of L which will make Z = 100. Find the
values of Z in each case to two decimal places.

Expand out (a) and (b) and rationalize (c) to (e).
(@) (3\V2 — 2V3)

(®) (V5 + 7V3)(2V5 — 3V3)

4+3\2

5442

V3 + 42

2 -3
_ 1

1++2-43

(©)

(d)
(e)

Find integers m and n such that

V(11 + 2V30) = Vm + Vn

Show that

1

VoD =¥ = o e

and deduce that

\/(n+1)—\/n<ﬁ<\/n—\/(n—l)

for any integer n = 1. Deduce that the sum

1 1 1 1 1
—+—+—+...+ +
NI A2 A3 \(9999)  (10000)
lies between 198 and 200.

Express each of the following subsets of R in
terms of intervals:

(a) {x:4x* — 3 < 4x, xin R}
(b) {x:1/(x +2)>2/(x — 1), xin R}

10

11

12

© {x|x+1]<2,xinR}

) {x]x+ 1] <1+ 7x,xin R}

It is known that of all plane curves that enclose a
given area, the circle has the least perimeter. Show
that if a plane curve of perimeter L encloses an area
A then 4TA < 2. Verify this inequality for a square
and a semicircle.

The arithmetic—geometric inequality

xX+y

= \xy

implies

2
X+y>
(2) v

Use the substitution x = 7 (a+b),y= %(c +d),
where a, b, ¢ and d > 0, to show that

(a+b)(c+d)<(a+b+c+d)2
2 2 4

and hence that

(a+b)2(c+d)2 <(a+b+c+d)4
2 2 4
By applying the arithmetic—geometric inequality

to the first two terms of this inequality, deduce
that

bed = (M)

4
and hence

a+b1—c+d>4\/abcd

Show that if a < b, b > 0 and ¢ > 0 then

a _a+c
—<
b b+c

<1

Obtain a similar inequality for the case a > b.

(a) If n = n, + n, + n; show that

n\(n, + ny n!
m n, nln,!ns!

(This represents the number of ways in which
n objects may be divided into three groups
containing respectively n,, n, and n; objects.)
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13

14

15

16

(b) Expand the following expressions

5
0 (1 - g) (i) (3 — 2x0)°

3
(a) Evaluate Y [n"™" +3(-1)"]

n=-2

(b) A square grid of dots may be divided up
into a set of L-shaped groups as illustrated in
Figure 1.35.

4
[ ) [}
[ ) [}
o | @
[} [} [} [ ) [}

Figure 1.35

How many dots are inside the third L shape?
How many extra dots are needed to extend the
3 by 3 square to one of side 4 by 4? How many
dots are needed to extend an (r — 1) by (r — 1)
square to one of size r by r? Denoting this
number by P., use a geometric argument to
obtain an expression for >r P and verify your

conclusion by direct calculation in the case n = 10.

Find the equations of the straight line

(a) which passes through the points (—6, —11)
and (2, 5);

(b) which passes through the point (4, —1) and
has gradient 1 ;

(c) which has the same intercept on the y axis as

the line in (b) and is parallel to the line in (a).

Find the equation of the circle which touches
the y axis at the point (0, 3) and passes through
the point (1, 0).

Find the centres and radii of the following circles:

(@ x*+y’+2x—4y+1=0
(b) 4x> —4x+ 4>+ 12y +9=0
(c) 9x* + 6x + 9y* — 6y = 25

17

18

19

For each of the two parabolas
(i) y* = 8x + 4y — 12, and
(i) x>+ 12y + 4x =8
determine
(a) the coordinates of the vertex,
(b) the coordinates of the focus,
(c) the equation of the directrix,
(d) the equation of the axis of symmetry.
Sketch each parabola.
Find the coordinates of the centre and foci of the
ellipse with equation
25x* + 16y* — 100x — 256y + 724 = 0
What are the coordinates of its vertices and the

equations of its directrices? Sketch the ellipse.

Find the duodecimal equivalent of the decimal
number 10.386 23.

20 Show that if y = x''* then the relative error bound
of y is one-half that of x. Hence complete the table
in Figure 1.36.
Absolute Relative
Value error bound  error bound
a 7.01 0.005 — 0.0007
Va 2.6476 0.0009 <— 0.000 35
b 52.13
\b
c 0.01011
Ve
d 5.631 X 10"
\
Correctly Na Vb Ve Vd
rounded
values 2.65

Figure 1.36
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21

22

23

24

Assuming that all the numbers given are correctly
rounded, calculate the positive root together with
its error bound of the quadratic equation

14x* +57x —23=0

Give your answer also as a correctly rounded
number.

The quantities f, # and v are connected by

Find f when u# = 3.00 and v = 4.00 are correctly
rounded numbers. Compare the error bounds
obtained for f when

(a) it is evaluated by taking the reciprocal of the
sum of the reciprocals of u and v,

(b) it is evaluated using the formula

uv

u+v

If the number whose decimal representation is
14732 has the representation 152 112, to base b,
what is b?

A milk carton has capacity 2 pints (1136 ml).

It is made from a rectangular waxed card using
the net shown in Figure 1.37. Show that the total
area A (mm?) of card used is given by

A(h, w) = 2w + 145)(h + 80)

v
4 Smm

1 35 mm overlap

1 1
<zw <sw
27 1<70mm> <wmm> |[<70mm>| "2

mm > mm >

ISSmm

5 mm
overlap

Figure 1.37 Milk carton of Question 24.

25

(*P P )

with aw = 113 600/7. Show that

4
A(h, w) = C(h, w) + 308400

where C(h, w) = 145h + 160w.
Use the arithmetic—geometric inequality to
show that

C(h, w) = 2\(160w X 145h)

with equality when 160w = 145h. Hence show
that the minimum values of C(h, w) and A(h, w)
are achieved when 2 = 133.8 and w = 121.3.
Give these answers to more sensible accuracy.

A family of straight lines in the x—y plane is
such that each line joins the point (—p, p) on the
line y = —x to the point (10 — p, 10 — p) on the
line y = x, as shown in Figure 1.38, for different
values of p. On a piece of graph paper, draw the
lines corresponding to p = 1, 2, 3,..., 9. The
resulting family is seen to envelop a curve. Show
that the line which joins (—p, p) to (10 — p,

10 — p) has equation

S5y =5x — px + 10p — p?

Show that two lines of the family pass through the
point (x,, y,) if x5 > 20(y, — 5), but no lines pass
through (x,, v,) if x5 < 20(y, — 5). Deduce that the
enveloping curve of the family of straight lines is

y=5x>+5

A Y

(10=p.,10—p)

=Y

Figure 1.38
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2.1

2.2

221

Introduction

As we have remarked in the introductory section of Chapter 1, mathematics provides
a means of solving the practical problems that occur in engineering. To do this, it
uses concepts and techniques that operate on and within the concepts. In this chapter
we shall describe the concept of a function — a concept that is both fundamental to
mathematics and intuitive. We shall make the intuitive idea mathematically precise by
formal definitions and also describe why such formalism is needed for practical prob-
lem solving.

The function concept has taken many centuries to evolve. The intuitive basis for
the concept is found in the analysis of cause and effect, which underpins develop-
ments in science, technology and commerce. As with many mathematical ideas, many
people use the concept in their everyday activities without being aware that they are
using mathematics, and many would be surprised if they were told that they were. The
abstract manner in which the developed form of the concept is expressed by mathema-
ticians often intimidates learners, but the essential idea is very simple. A consequence
of the long period of development is that the way in which the concept is described
often makes an idiomatic use of words. Ordinary words which in common parlance
have many different shades of meaning are used in mathematics with very specific
meanings.

The key idea is that of the values of two variable quantities being related. For
example, the amount of tax paid depends on the selling price of an item; the deflection
of a beam depends on the applied load; the cost of an article varies with the number
produced; and so on. Historically, this idea has been expressed in a number of ways.
The oldest gave a verbal recipe for calculating the required value. Thus, in the early
Middle Ages, a very elaborate verbal recipe was given for calculating the monthly
interest payments on a loan which would now be expressed very compactly by a single
formula. John Napier, when he developed the logarithm function at the beginning of
the seventeenth century, expressed the functional relationship in terms of two particles
moving along a straight line. One particle moved with constant velocity and the other
with a velocity that depended on its distance from a fixed point on the line. The relation-
ship between the distances travelled by the particles was used to define the logarithms
of numbers. This would now be described by the solution of a differential equation. The
introduction of algebraic notation led to the representation of functions by algebraic
rather than verbal formulae. That produced many theoretical problems. For example,
a considerable controversy was caused by Fourier when he used functions that did not
have the same algebraic formula for all values of the independent variable. Similarly,
the existence of functions that do not have a simple algebraic representation caused
considerable difficulties for mathematicians in the early nineteenth century.

Basic definitions

Concept of a function

The essential idea that flows through all of the developments is that of two quantities
whose values are related. One of these variables, the independent or free variable,
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Figure 2.1
Schematic
representation
of a function.

may take any value in a set of values. The value it actually takes fixes uniquely the
value of the second quantity, the dependent or slave variable. Thus for each value
of the independent variable there is one and only one value of the dependent variable.
The way in which that value is calculated will vary between functions. Sometimes it
will be by means of a formula, sometimes by means of a graph and sometimes by means
of a table of values. Here the words ‘value’ and ‘quantity’ cover many very different
contexts, but in each case what we have is two sets of values X and Y and a rule that
assigns to each value x in the set X precisely one value y from the set Y. The elements
of X and Y need not be numbers, but the essential idea is that to every x in the set X
there corresponds exactly one y in the set Y. Whenever this situation arises we say that
there is a function f that maps the set X to the set Y. Such a function may be illustrated
schematically as in Figure 2.1.
We represent a functional relationship symbolically in two ways: either

fix—y (xinX)
or
y =/ «inX)

The first emphasizes the fact that a function f associates each element (value) x of X
with exactly one element (value) y of Y: it ‘maps x to y’. The second method of nota-
tion emphasizes the dependence of the elements of Y on the elements of X under the
function f. In this case the value or variable appearing within the brackets is known
as the argument of the function; we might say ‘the argument x of a function f(x)’. In
engineering it is more common to use the second notation y = f(x) and to refer to this
as the function f(x), while modern mathematics textbooks prefer the mapping notation,
on the grounds that it is less ambiguous. The set X is called the domain of the function
and the set Y is called its codomain. Knowing the domain and codomain is important
in computing. We need to know the type of variables, whether they are integers or
reals, and their size. When y = f(x), y is said to be the image of x under f. The set of
all images y = f(x), x in X, is called the image set or range of f. It is not necessary
for all elements y of the codomain set Y to be images under f. In the terminology to be
presented later (see Chapter 6), the range is a subset of the codomain. We may regard
X as being a variable that can be replaced by any element of the set X. The rule giving
fis then completely determined if we know f(x), and consequently in engineering it
is common to refer to the function as being f(x) rather than f. Likewise we can regard
y = f(x) as being a variable. However, while x can freely take any value from the set
X, the variable y = f(x) depends on the particular element chosen for x. We therefore
refer to x as the free or independent variable and to y as the slave or dependent
variable. The function f(x) is therefore specified completely by the set of ordered pairs
(x, y) for all x in X. For real variables a graphical representation of the function may then
be obtained by plotting a graph determined by this set of ordered pairs (x, y), with the
independent variable x measured along the horizontal axis and the dependent variable
y measured along the vertical axis. Obtaining a good graph by hand is not always easy
but there are now available excellent graphics facilities on computers and calculators
which assist in the task. Even so, some practice is required to ensure that a good choice
of ‘drawing window’ is selected to obtain a meaningful graph.
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Example 2.1

Solution

Example 2.2

Solution

Figure 2.2
Enclosing x circular
pipes in a circular

pipe.

For the functions with formulae below, identify their domains, codomains and ranges
and calculate values of f(2), f(—3) and f(—x).

@ f()=3+1  (b) fx—\[(x + 43 — )]

(a) The formula for f(x) can be evaluated for all real values of x and so we can take a
domain which includes all the real numbers, R. The values obtained are also real num-
bers, so we may take R as the codomain. The range of f(x) is actually less than R in this
example because the minimum value of y = 3x* + 1 occurs at y = 1 where x = 0. Thus
the range of fis the set

{x:1 =x,xinR} =1, c0)

Notice the convention here that the set is specified using the dummy variable x. We
could also write {y:1 <y, y in R} — any letter could be used but conventionally x is
used. Using the formula we find that f(2) = 13, f(—3) = 28 and f(—x) = 3(—x)* + 1 =
3x% + 1. The function is even (see Section 2.2.6).

(b) The formula fx — \[(x + 4)(3 — x)] only gives real values for —4 < x < 3, since
we cannot take square roots of negative numbers. Thus the domain of fis [—4,3].
Within its domain the function has real values so that its codomain is R but its range is
less than R. The least value of foccurs at x = —4 and x = 3 when f(—4) = f(3) = 0.
The largest value of f occurs at x = —% when f(—%) =(35)/2.

So the range of fin this example is [0, \/(35)/2]. Using the formula we have f(2) = V6,
f(=3) =6, f(=x) = \[(4 = D)(x + 3)].

The function y = f(x) is given by the minimum diameter y of a circular pipe that can
contain x circular pipes of unit diameter, where x = 1, 2, 3, 4, 5, 6, 7. Find the domain,
codomain and range of f(x).

This function is illustrated in Figure 2.2.
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Example 2.3

Solution

Here the domain is the set {1, 2, 3, 4, 5, 6, 7} and the codomain is R. Calculating the
range is more difficult as there is not a simple algebraic formula relating x and y. From
geometry we have

f()=1,/2)=2,f(3) =1+ 2N3, f(4) = 1 +\2, f(5) = N[2(5 — V5)],
f6) =3,f(7)=3

The range of f(x) is the set of these values.

The relationship between the temperature 7; measured in degrees Celsius (°C) and the
corresponding temperature 7, measured in degrees Fahrenheit (°F) is

T,=2T, + 32

Interpreting this as a function with 7, as the independent variable and 7, as the
dependent variable:

(a) What are the domain and codomain of the function?
(b) What is the function rule?

(c) Plot a graph of the function.

(d) What is the image set or range of the function?

(e) Use the function to convert the following into °F:

(1) 60°C, (i1) 0°C, (iii)) —50°C

(a) Since temperature can vary continuously, the domain is the set 7, = T, = —273.16
(absolute zero). The codomain can be chosen as the set of real numbers R.

(b) The function rule in words is
multiply by % and then add 32
or algebraically
AT) =3T, + 32

(c) Since the domain is the set T, = T,, there must be an image for every value of T,
on the horizontal axis which is greater than —273.16. The graph of the function is that
part of the line T, = 2T, + 32 for which T, > —273.16, as illustrated in Figure 2.3.

(d) Since each value of 7, is an image of some value 7 in its domain, it follows that
the range of f(T) is the set of real numbers greater than —459.69.

(e) The conversion may be done graphically by reading values of the graph, as illustrated
by the dashed lines in Figure 2.3, or algebraically using the rule

T,=%T, + 32
giving the values

(i) 140°F, (i1) 32°F, (iii)) —58°F
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Figure 2.3
Graph of 0
T, =f(T)) = 3T, + 32

Figure 2.4
Graph of
y=(x— D+ 2).

T,/°F

A value of the independent variable for which the value of a function is zero is called
a zero of that function. Thus the function f(x) = (x — 1)(x + 2) has two zeros, x = | and
x = —2.These correspond to where the graph of the function crosses the x axis, as shown
in Figure 2.4. We can see from the diagram that, for this function, its values decrease as
the values of x increase from (say) —5 up to —%, and then its values increase with x. We
can demonstrate this algebraically by rearranging the formula for f(x):

S = (x = Dx +2)

=x*+x-2
1 9
=&+’ -7
From this we can see that f(x) achieves its smallest value (—%) where x = —% and that the
value of the function is greater than —7 both sides of x = —1 because (x + 3)* = 0. The

function is said to be a decreasing function for x < —1 and an increasing function for
x> —%. More formally, a function is said to be increasing on an interval (a, b) if f(x,)
> f(x,) when x, > x, for all x, and x, lying in (a, b). Similarly for decreasing functions,
we have f(x,) < f(x,) when x, > x,.

The value of a function at the point where its behaviour changes from decreasing to
increasing is a minimum (plural minima) of the function. Often this is denoted by an
asterisk superscript f* and the corresponding value of the independent variable by x*
so that f(x*) = f*. Similarly a maximum (p/ural maxima) occurs when a function
changes from being increasing to being decreasing. In many cases the terms maximum
and minimum refer to the local values of the function, as illustrated in Example 2.4(a).
Sometimes, in practical problems, it is necessary to distinguish between the largest
value the function achieves on its domain and the local maxima it achieves elsewhere.
Similarly for local minima. Maxima and minima are jointly referred to as optimal
values and as extremal values of the function.

The point (x*, f*) of the graph of f(x) is often called a turning point of the graph,
whether it is a maximum or a minimum. These properties will be discussed in more
detail later (see Sections 8.2.7 and 8.5). For smooth functions as in Figure 2.5, the
tangent to the graph of the function is horizontal at a turning point. This property can
be used to locate maxima and minima.
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Example 2.4

Solution

Figure 2.5
Graph of y = 2x* + 3x?
— 12x + 32.

Figure 2.6
Graph of
y=(x—1D"—-1.

Draw graphs of the functions below, locating their zeros, intervals in which they are
increasing, intervals in which they are decreasing and their optimal values.

(a)y=2x3+3x2_12x+32 (b)y=(x—1)2/3—1

(a) The graph of the function is shown in Figure 2.5. From the graph we can see
that the function has one zero at x = —4. It is an increasing function on the intervals
—oo<x < —2and 1 <x < ooand a decreasing function on the interval —2 < x < 1.
It achieves a maximum value of 52 at x = —2 and a minimum value of 25 at x = 1.
In this example the extremal values at x = —2 and x = 1 are local maximum and local
minimum values. The function is defined on the set of real numbers R. Thus it does not
have finite upper and lower values. If the domain were restricted to [— 4, 4], say, then
the global minimum would be f(—4) = 0 and the global maximum would be f(4) = 160.

Y
160

40

20

(b) The graph of the function is shown in Figure 2.6. (Note that to evaluate (x — 1)**
on some calculators/computer packages it has to be expressed as ((x — 1)) forx < 1.)
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Example 2.5

Solution

From the graph, we see that the function has two zeros, one at x = 0 and the other
at x = 2. It is a decreasing function for x < I and an increasing function for x > 1.
This is obvious algebraically since (x — 1)*? is greater than or equal to zero. This
example also provides an illustration of the behaviour of some algebraic functions at
a maximum or minimum value. In contrast to (a) where the function changes from
decreasing to increasing at x = 1 quite smoothly, in this case the function changes
from decreasing to increasing abruptly at x = 1. Such a minimum value is called a
cusp. In this example, the value at x = 1 is both a local minimum and a global
minimum.

It is important to appreciate the difference between a function and a formula. A
function is a mapping that associates one and only one member of the codomain with
every member of its domain. It may be possible to express this association, as in
Example 2.3, by a formula. Some functions may be represented by different formulae
on different parts of their domain.

A gas company charges its industrial users according to their gas usage. Their tariff is
as follows:

Quarterly usage/10° units Standing charge/£ Charge per 10° units/£
0-19.999 200 60
20-49.999 400 50
50-99.999 600 46
=100 800 44

What is the quarterly charge paid by a user?

The charge £c¢ paid by a user for a quarter’s gas is a function, since for any number
of units used there is a unique charge. The charging tariff is expressed in terms of the
number u of thousands of units of gas consumed. In this situation the independent
variable is the gas consumption u since that determines the charge £c which accrues to
the customer. The function f: usage — cost must, however, be expressed in the form
¢ = f(u), where

200 + 60u (0 < u < 20)

400 + 50u (20 < u < 50)
fuw=

600 + 46u (50 < u < 100)

800 + 44u (100 < u)

Functions that are represented by different formulae on different parts of their domains
arise frequently in engineering and management applications.




2.2 BASIC DEFINITIONS 71

The basic MATLAB package is primarily a number-crunching package. Symbolic
manipulation and algebra can be undertaken by the Symbolic Math Toolbox,
which incorporates many MAPLE commands to implement the algebraic work.
Consequently, most of the commands in Symbolic Math Toolbox are identical to
the MAPLE commands. In order to use any symbolic variables, such as x and vy,
in MATLAB these must be declared by entering a command, such as syms x y;.
Inserting a semicolon at the end of a statement suppresses display on screen of the
output to the command.

The MATLAB operators for the basic arithmetic operations are + for addition,
- for subtraction, * for multiplication, / for division and ~ for power. The colon
command x = a:dx:b generates an array of numbers which are the values of x
between a and b in steps of dx. For example, the command

x = 0:0.1:1
generates the array
x=200.10.2 0.3 0.4 0.50.60.70.80.91.0

When using the operations of multiplication, division and power on such arrays *, /
and ~ are replaced respectively by . *, ./ and .~ in which the ‘dot’ implies element
by element operations. For example, if x = [1 2 3] and y = [4 —3 5] are two arrays
then x. *y denotes the array [4 — 6 15] and x. ~ 2 denotes the array [1 4 9]. Note that
to enter an array it must be enclosed within square brackets [ 7.

To plot the graph of y = f(x), a < x < b, an array of x values is first produced and
then a corresponding array of y values is produced. Then the command plot (x, y)
plots a graph of y against x. Check that the sequence of commands

x = -5:0.1:3;
W= 2%%. 73 F FER. P2 = 12%x + 32¢
plot(x,y)

plots the graph of Figure 2.5. Entering a further command
grid

draws gridlines on the existing plot. The following commands may be used for
labelling the graph:

title('text') prints ‘text’ at the top of the plot
xlabel ('text') labels the x axis with ‘text’
ylabel ('text') labels the y axis with ‘text’

Plotting the graphs of y, = f(x) and y, = g(x), a < x < b, can be achieved using the
commands

x = [a:dx:b]'; yl = £(x); y2 = g(x);
plOt(lell '—',Xryzr Ui _')
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with ‘-”and ‘- -’ indicating that the graph of y, = f(x) will appear as a ‘solid line’
and that of y, = g(x) as a ‘dashed line’. These commands can be extended to include
more than two graphs as well as colour. To find out more, use the help facility in
MATLAB.

Using the Symbolic Math Toolbox the sym command enables us to construct
symbolic variables and expressions. For example,

x = sym('x")
creates the variable x that prints as x; whilst the command
£ = sym(2*x + 3)

assigns the symbolic expression 2x + 3 to the variable f. If f includes parameters
then these must be declared as symbolic terms at the outset. For example, the
sequence of commands

syms x a b
f = sym(a*x + b)

prints
f=ax + b

(Note the use of spacing when specifying variables under syms.)

The command ezplot (y) produces the plot of y = f(x), making a reasonable
choice for the range of the x axis and resulting scale of the y axis, the default domain
of the x axis being —27 < x < 27. The domain can be changed to a < x < b using
the command ezplot (y, [a, b]). Check that the commands

syms x
y = sym(2*x"3 + 3*x"2 - 12*x + 32);
ezplot(y, [-5,3])

reproduce the graph of Figure 2.5 and that the commands

syms X
y = sym(((x - 1)"2)~(1/3) - 1)
ezplot(y, [-5,3])

reproduce the graph of Figure 2.6. (Note that in the second case the function is
expressed in the form indicated in the solution to Example 2.4(b).)



2.2 BASIC DEFINITIONS 73

2.2.2 Exercises

Check your answers using MATLAB whenever possible.

Determine the largest valid domains for the
functions whose formulae are given below. Identify
the corresponding codomains and

ranges and evaluate f(5), f(—4), f(—x).

@) f() =V25—x>)  (b) fx—N(x+3)

A straight horizontal road is to be constructed
through rough terrain. The width of the road is

to be 10 m, with the sides of the embankment
sloping at 1 (vertical) in 2 (horizontal), as shown
in Figure 2.7. Obtain a formula for the cross-
sectional area of the road and its embankment,
taken at right angles to the road, where the rough
ground lies at a depth x below the level of the
proposed road. Use your formula to complete the
table below, and draw a graph to represent this
function.

x/m 0 1 2 3 4 5
Area/m’ 0 28 100

10 m

Ih xm

B

Figure 2.7

2h

What is the value given by the formula when
x = —2, and what is the meaning of that value?

A hot-water tank has the form of a circular
cylinder of internal radius r, topped by a
hemisphere as shown in Figure 2.8. Show
that the internal surface area A is given by

A = 21rh + 31r?
and the volume V enclosed is
V=rmnrh + %77:;’3

Find the formula relating the value of A to
the value of r for tanks with capacity 0.15m’.
Complete the table below for A in terms of r
and draw a graph to represent the function.

Figure 2.8

0.10 0.15 0.20 0.25 0.30 0.35
3.05 1.71 1.50

r/m 0.40

A/m?

The cost of the tank is proportional to the amount of
metal used in its manufacture. Estimate the value of
r that will minimize that cost, carefully listing the
assumptions you make in your analysis.

[Recall: the volume of a sphere of radius a is 477a’/3
and its surface area is 47a’.]

An oil storage tank has the form of a circular
cylinder with its axis horizontal, as shown in
Figure 2.9. The volume of oil in the tank when
the depth is 4 is given in the table below.

05 1.0 15 20 25 30 35 40
7.3 19.7 34.4 50.3 66.1 80.9 93.9 100.5

h/m
V10001

‘
s

Figure 2.9
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Draw a careful graph of V against A, and use it to
design the graduation marks on a dipstick to be
used to assess the volume of oil in the tank.

The initial cost of buying a car is £6000. Over the
years, its value depreciates and its running costs
increase, as shown in the table below.

t 1 2 3 4 5 6
Value after
t years
Running cost
in yeart

4090 2880 2030 1430 1010 710

600 900 1200 1500 1800 2100

Draw up a table showing (a) the cumulative running
cost after ¢ years, (b) the total cost (that is, running
cost plus depreciation) after ¢ years and (c) the
average cost per year over ¢ years. Estimate the
optimal time to replace the car.

Plot graphs of the functions below, locating their
zeros, intervals in which they are increasing,
intervals in which they are decreasing and their
optimal values.

(@ y=x(x—2)
© y=x("—2)

(b) y =2 —3x* — 12x + 20
(d) y = 1xx = 2)]

2.2.3 Inverse functions

In some situations we may need to use the functional dependence in the reverse sense.
For example, we may wish to use the function

T, = f(T)) = 3T, + 32

2.1)

of Example 2.3, relating 7, in °F to the corresponding 7, in °C to convert degrees
Fahrenheit to degrees Celsius. In this simple case we can rearrange the relationship

(2.1) algebraically
T, = 3(T, — 32)

giving us the function

T, = g(T) = 5(T, — 32)

(2.2)

having T, as the independent variable and 7, as the dependent variable. We may then
use this to convert degrees Fahrenheit into degrees Celsius.

Looking more closely at the two functions f(7) and g(7,) associated with (2.1) and
(2.2), we have the function rule for /(7)) as

multiply by 2 and then add 32

If we reverse the process, we have the rule

fe) —

(a)

x=f7 y

y=f(x)

take away 32 and then multiply by 3

which is precisely the function rule for g(73). Thus the function 7|, = g(T,) reverses
the operations carried out by the function 7, = f(7), and for this reason is called the

(b)

Figure 2.10

Block diagram of
(a) function and

(b) inverse function.

inverse function of 7, = f(T)).
') In general, the inverse function of a function f is a function that reverses the
operations carried out by £. It is denoted by f~'. Writing y = f(x), the function f may

be represented by the block diagram of Figure 2.10(a), which indicates that the

Figure 2.10(b).

function operates on the input variable x to produce the output variable y = f(x).
The inverse function £ ' will reverse the process, and will take the value of y back to
the original corresponding values of x. It can be represented by the block diagram of
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Example 2.6

Solution

We therefore have
x=f"'(y), wherey = f(x) 2.3)

that is, the independent variable x for f acts as the dependent variable for f ', and
correspondingly the dependent variable y for f becomes the independent variable for
f~'. At the same time the range of f becomes the domain of f ' and the domain of f
becomes the range of f .

Since it is usual to denote the independent variable of a function by x and the
dependent variable by y, we interchange the variables x and y in (2.3) and define
the inverse function by

ify=f""(x) thenx=f(y) 2.9

Again in engineering it is common to denote an inverse function by f~'(x) rather than
f~'. Writing x as the independent variable for both f(x) and f ~'(x) sometimes leads to
confusion, so you need to be quite clear as to what is meant by an inverse function.
It is also important not to confuse f~'(x) with [ f(x)]~', which means 1/f(x). You also
then need to watch out for values x at which f(x) = 0 and act accordingly.

Finding an explicit formula for f~'(x) is often impossible and its values are calcu-
lated by special numerical methods. Sometimes it is possible to find the formula for
f7'(x) by algebraic methods. We illustrate the technique in the next two examples.

Obtain the inverse function of the real function y = f(x) = %(4x - 3).

Here the formula for the inverse function can be found algebraically. First rearranging
Y =f() = 3(4x = 3)

to express x in terms of y gives
x=f7() =136y +3)

Interchanging the variables x and y then gives
Y= =56x +3)

as the inverse function of
Y =f() = 3(4x - 3)

As a check, we have
fQ)=+@4x2-3) =1

while

) =76x1+3) =2
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Example 2.7

Solution

Figure 2.11
The graph of
y=f0.

Example 2.8

Solution

) ) ) x+2
Obtain the inverse function of ¥ = f(x) = 1

s x# —1.

x+2
x+1

We rearrange Y = to obtain x in terms of y. (Notice that y is not defined where

x = —1.) Thus

yx+1)=x+2 sothat x(y —1)=2—y

Y
iving ¥ = > y# 1. (Notice that x is not defined where y = 1. Putting y = 1 into
giving y—1

the formula for y results in the equation x + 1 = x + 2 which is not possible.) Thus

2—x

[l ="—1 x#1

If we are given the graph of y = f(x) and wish to obtain the graph of the inverse function
y = f !(x) then what we really need to do is interchange the roles of x and y. Thus we
need to manipulate the graph of y = f(x) so that the x and y axes are interchanged. This
can be achieved by taking the mirror image in the line y = x and relabelling the axes as
illustrated in Figures 2.11(a) and (b). It is important to recognize that the graphs of y = f(x)
and y = f'(x) are symmetrical about the line y = x, since this property is frequently used
in mathematical arguments. Notice that the x and y axes have the same scale.

y y=1x) oy

Mirror
image
0 iny=x

(a) (b)

x+2

Obtain the graph of £ ~'(x) when (a) f(x) = 2x + 32, (b) f(x) = ,x# —1,(c) fix) = X~

x+1

(a) This is the formula for converting the temperature measured in °C to the temper-
ature in °F and its graph is shown by the blue line in Figure 2.12(a). Reflecting the
graph in the line y = x yields the graph of the inverse function y = g(x) = %(x — 32)as
illustrated by the black line in Figure 2.12(a).
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0“ 4,’

y=f(x) -

% _
L2 liney=x

R )
l, 1 1 1

Figure 2.13
Graphs of f(x) = x*
and its inverse.

2
Figure 2.12 (a) Graph of f(x) = %x + 32 and its inverse g(x). (b) Graph of f(x) = al —:_ 1
X

and its inverse g(x).

+2
(b) The graph of y = f(x) = al
x+1

, x# —1, is shown in blue in Figure 2.12(b). The

graph of its inverse function y = g(x) =

;)16, x # 1, can be seen as the mirror image
illustrated in black in Figure 2.12(b).

(c) The graph of y = x? is shown in Figure 2.13(a). Its mirror image in the line y = x
gives the graph of Figure 2.13(b). We note that this graph is not representative of a
function according to our definition, since for all values of x > 0 there are two images
— one positive and one negative — as indicated by the dashed line. This follows because
y = x? corresponds to x = + Vyorx = — \/y. In order to avoid this ambiguity, we define
the inverse function of f(x) = x* to be f~'(x) = + \x, which corresponds to the upper
half of the graph as illustrated in Figure 2.13(c). Vx therefore denotes a positive number
(cf. calculators), so the range of \x is x = 0. Thus the inverse function of y =f(x) =x*
x=0isy=7f"'x) = Vx. Note that the domain of f(x) had to be restricted to x = 0
in order that an inverse could be defined. In modern usage, the symbol Vx denotes a
positive number.

y y y
Y
- >0 - ;
1
1 1 !
1 1 : .
—x; O X X (0] i X (6] X
1

(@) y=f=x b y=x (© y=f'=+k
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224

Figure 2.14
The composite
function f(g(x)).

We see from Example 2.8(c) that there is no immediate inverse function correspond-
ing to f(x) = x* This arises because for the function f(x) = x* there is a codomain
element that is the image of two domain elements x;, and —x,, as indicated by the
dashed arrowed lines in Figure 2.13(a). That is, f(x,) = f(—x,) = y,. If a function y = f(x)
is to have an immediate inverse f '(x), without any imposed conditions, then every
element of its range must occur precisely once as an image under f(x). Such a function
is known as a one-to-one (1:1) injective function.

Composite functions

In many practical problems the mathematical model will involve several different
functions. For example, the kinetic energy 7 of a moving particle is a function of its
velocity v, so that

T =f(v)
Also, the velocity v itself is a function of time ¢, so that
v =g(n)

Clearly, by eliminating v, it is possible to express the kinetic energy as a function of
time according to

T = f(g(1)

A function of the form y = f(g(x)) is called a function of a function or a composite
of the functions f(x) and g(x). In modern mathematical texts it is common to denote
the composite function by f o g so that

y = fogl) = f(gx) (2.5)

We can represent the composite function (2.5) schematically by the block diagram of
Figure 2.14, where u = g(x) is called the intermediate variable.

It is important to recognize that the composition of functions is not in general
commutative. That is, for two general functions f(x) and g(x)

J(g@) # g(f(x))

Algebraically, given two functions y = f(x) and y = g(x), the composite function
y = f(g(x)) may be obtained by replacing x in the expression for f(x) by g(x). Likewise,
the composite function y = g(f(x)) may be obtained by replacing x in the expression
for g(x) by f(x).

y=flu)

— s® - o = f(g(x))

fogorflglx)
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Example 2.9

Solution

Figure 2.15

Graphs of f(x),

f(x — k) and f(x + k),
with £ > 0.

If y = f(x) = x>+ 2xand y = g(x) = x — 1, obtain the composite functions f(g(x)) and
8(f(x).

To obtain f( g(x)), replace x in the expression for f(x) by g(x), giving
y = f(g0) = (8(0))* + 2(g(x))
But g(x) = x — 1, so that
y=fg)) = (x— 1’ +2(x—1)
=x*—2x+1+2x—2

That is,
fle) =x* — 1
Similarly,
y=g(f() =(fx) -1
= +2x) -1
That is,

g(fx) =x>+2x—1
Note that this example confirms the result that, in general, f(g(x)) # g(f(x)).

Given a function y = f(x), two composite functions that occur frequently in engineer-
ing are

y=f(x+k) and y=f(x—k)

where k is a positive constant. As illustrated in Figures 2.15(b) and (c), the graphs of
these two composite functions are readily obtained given the graph of y = f(x) as in
Figure 2.15(a). The graph of y = f(x — k) is obtained by displacing the graph of y =
f(x) by k units to the right, while the graph of y = f(x + k) is obtained by displacing
the graph of y = f(x) by k units to the left.

Viewing complicated functions as composites of simpler functions often enables us
to ‘get to the heart’ of a practical problem, and to obtain and understand the solution.
For example, recognizing that y = x> + 2x — 3 is the composite functiony = (x + 1)* — 4
tells us that the function is essentially the squaring function. Its graph is a parabola
with minimum point at x = —1,y = —4 (rather than at x = 0, y = 0). A similar process

Y y=fx) Y y=flx—k) Yy y=fx+k
I/\\—/ , |/<~\~.__ L /7\::)./__»"
I I I I I
;1 O X x'l xl-itk O X x,'—k ;1 (6] X

(a) (b) (©)
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Example 2.10

Figure 2.16
Conical container
of Example 2.10.

Solution

of reducing a complicated problem to a simpler one occurred in the solution of the prac-
tical problem discussed in Example 1.49.

An open conical container is made from a sector of a circle of radius 10 cm as illustrated
in Figure 2.16, with sectional angle 6 (radians). The capacity C cm’® of the cone depends
on 6. Find the formula for C in terms of 6 and the simplest associated function that
could be studied if we wish to maximize C with respect to 6.

) cm

Let the cone have base radius rcm and height ~Acm. Then its capacity is given by
C= %frrrzh with r and i dependent upon the sectorial angle 0 (since the perimeter of
the sector has to equal the circumference of the base of the cone). Thus, by Pythagoras’
theorem,

100 = 2zr and h* = 10> — 7*

so that
2 2712
C(e):lw(l()_ﬁ) 102 _[10_0]
3 2T 2

/
1000 (6 ) o V21"
=3 "2 1‘@ L 0<6@=<2rm

Maximizing C(0) with respect to 6 is essentially the same problem as maximizing
Dx)=x(1 —x)"%, 0sx<1

(where x = (6/21)%).
Maximizing D(x) with respect to x is essentially the same problem as maximizing

Ex)=x*1 —x), 0sx=<1

which is considerably easier than the original problem.

Plotting the graph of E(x) suggests that it has a minimum at x = % where its value is 24—7.
We can prove that this is true by showing that the horizontal line y = % is a tangent to the
graph at x = %; that is, the line cuts the graph at two coincident points at x = %
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Setting x*(1 — x) = 5 gives 27x° — 27x> + 4 = 0 which factorizes into
Bx—2Bx+1)=0

Thus the equation has a double root at x = % and a single root at x = —5. Thus E(x) has
a maximum at x = % and the corresponding optimal value of 6 is 2m\(%). (Later, in
Section 8.5 (see also Question 5 in Review exercises 8.13), we shall consider theoretical
methods of confirming such results.)

When we compose a function with its inverse function, we usually obtain the identity
function y = x. Thus from Example 2.6, we have

f)=+@x—3) and f'(x)=7(5x+3)
and

FUF) = H{dFGx + 3)] — 3} =x

and

FUf) = 5 {5[F@dx — 3)] + 3} = x

We need to take care with the exceptional cases that occur, like the square root function,
where the inverse function is defined only after restricting the domain of the original
function. Thus for f(x) = x> (x = 0) and f~'(x) = \x (x = 0), we obtain

f(f7'@) =x, forx= 0 only

and
x, forx= 0

S @) ={

—x, forx= 0

2.2.5 Exercises

A function f(x) is defined by f(x) = +(10* + 107), 9 A function fis defined by

for x in R. Show that

@ 2(f0) = f20) + 1 0 &<-D

(b) 2/()f(3) = flx + ) + fx = ) fy =] TT IS0
Il—x 0=x=<1

0 GG>1

Draw separate graphs of the functions f and g where
f(x)=(@x+ 1)*and g(x) = x — 2

The functions F and G are defined by Sketch on separate diagrams the graphs of f(x),

SO+ D SO+ D fx+2), flo— 1), flx = 1)

F(x) = f(g(x)) and G(x) = g(f(x)) and f(x — 2).
Find formulae for F(x) and G(x) and sketch their
graphs. What relationships do the graphs of F' 10 Find the inverse function (if it is defined) of the

and G bear to those of fand g? following functions:



82 FUNCTIONS

12

(@ fx)=2x—3 (xinR)

2x =3 )
(b) f(x) = m (xin R, x# —4)
© fxy=x*+1 (inR)

If f(x) does not have an inverse function, suggest a
suitable restriction of the domain of f(x) that will
allow the definition of an inverse function.

Show that

Flx) = 2x =3

x+4

may be expressed in the form

() = g(h(l(x)))

where
Ix)=x+4
h(x) = 1/x
gx) =2 —1lx

Interpret this result graphically.

The stiftness of a rectangular beam varies directly
with the cube of its height and directly with its

13

breadth. A beam of rectangular section is to be cut
from a circular log of diameter d. Show that the
optimal choice of height and breadth of the beam
in terms of its stiffness is related to the value of x
which maximizes the function

E(x) = x(d*—x), 0<x<d?

A beam is used to support a building as shown in
Figure 2.17. The beam has to pass over a 3 m brick
wall which is 2 m from the building. Show that the
minimum length of the beam is associated with the
value of x which minimizes

E(x)=(x + 2)2(1 + %)
X

A

3m

2m —» T

Figure 2.17 Beam of Question 13.

2.2.6

Odd, even and periodic functions

Some commonly occurring functions in engineering contexts have the special properties
of oddness or evenness or periodicity. These properties are best understood from the

graphs of the functions.

An even function is one that satisfies the functional equation

J(=x) =fx)

Thus the value of f(—2) is the same as f(2), and so on. The graph of such a function is
symmetrical about the y axis, as shown in Figure 2.18.

In contrast, an odd function has a graph which is antisymmetrical about the origin,
as shown in Figure 2.19, and satisfies the equation

J(=x) = —f)

We notice that f(0) = 0 or is undefined.

Polynomial functions like y = x* — x> — 1, involving only even powers of x, are
examples of even functions, while those like y = x — x°, involving only odd powers
of x, provide examples of odd functions. Of course, not all functions have the property

of oddness or evenness.
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Example 2.11

Figure 2.20
Graphs of
Example 2.11.

720 .

Figure 2.18 Graph of an even function.

710 n

720 .

Figure 2.19 Graph of an odd function.

Which of the functions y = f(x) whose graphs are shown in Figure 2.20 are odd, even

or neither odd nor even?

(a)

(c)

(e)

AN
B

L/

X

(b)

(a)

2
Yy
s
1 A
2

(*) 15

X
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Solution (a) The graph for x < 0 is the mirror image of the graph for x > 0 when the mirror is
placed on the y axis. Thus the graph represents an even function.

(b) The mirror image of the graph for x > 0 in the y axis is shown in Figure 2.21(a). Now
reflecting that image in the x axis gives the graph shown in Figure 2.21(b). Thus Figure
2.20(b) represents an odd function since its graph is antisymmetrical about the origin.

Figure 2.21

Y YA
1 1
1 1
| 4 \ 4 1
1 1
1 1
\ 27 \ 27
LN L\
S 1 2 x -2}, —1\/ o 1 2 x
1 U 72 N 1 7 72 =
1 U 1 U
\ 1' \‘ II
h —4 4
(a) (b)
(c) The graph is neither symmetrical nor antisymmetrical about the origin, so the
function it represents is neither odd nor even.
(d) The graph is symmetrical about the y axis so it is an even function.
(e) The graph is neither symmetrical nor antisymmetrical about the origin, so it is
neither an even nor an odd function.
(f) The graph is antisymmetrical about the origin, so it represents an odd function.
A periodic function is such that its image values are repeated at regular intervals in
its domain. Thus the graph of a periodic function can be divided into ‘vertical strips’
that are replicas of each other, as shown in Figure 2.22. The width of each strip is called
the period of the function. We therefore say that a function f(x) is periodic with period
P if for all its domain values x
f(x +nP) = f(x)
for any integer n.
Figure 2.22 J) A
A periodic function
of period P.

at

—(P—x)

<—— One period —>i<— One period —
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Example 2.12

Figure 2.23
f(x) of Example 2.12
defined on [0, 1].

Solution

Figure 2.24
f(x) having period 1.

To provide a measure of the number of repetitions per unit of x, we define the
frequency of a periodic function to be the reciprocal of its period, so that

frequency = -
period

The Greek letter v (‘nu’) is usually used to denote the frequency, so that v = 1/P. The
term circular frequency is also used in some engineering contexts. This is denoted by
the Greek letter w (‘omega’) and is defined by

2
a):27tv:—ﬂ
P

It is measured in radians per unit of x, the free variable. When the meaning is clear from
the context, the adjective ‘circular’ is commonly omitted.

A function f(x) has the graph on [0, 1] shown in Figure 2.23. Sketch its graph on [—3, 3]
given that

(a) f(x)is periodic with period 1;
(b) f(x) is periodic with period 2 and is even;

(c) f(x)is periodic with period 2 and is odd.

fx)

S R
—_
=

(a) Since f(x) has period 1, strips of width 1 unit are simply replicas of the graph
between 0 and 1. Hence we obtain the graph shown in Figure 2.24.

Jx)

(b) Since f(x) has period 2 we need to establish the graph over a complete period
before we can replicate it along the domain of f(x). Since it is an even function and
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Figure 2.25 J@)
f(x) periodic with
period 2 and is even.

—
T

|
—_
|
W= @----
o
W= @----
—
=

(a)
fx)
1 -
-3 -2 -1 ¢} 1 2 3 x

(b)

we know its values between 0 and 1, we also know its values between —1 and 0. We
can obtain the graph of f(x) between —1 and O by reflecting in the y axis, as shown in
Figure 2.25(a). Thus we have the graph over a complete period, from —1 to +1, and
so we can replicate along the x axis, as shown in Figure 2.25(b).

(c) Similarly, if f(x) is an odd function we can obtain the graph for the interval [—1, 0]
using antisymmetry and the graph for the interval [0, 1]. This gives us Figure 2.26(a)
and we then obtain the whole graph, Figure 2.26(b), by periodic extension.

Figure 2.26 f(x)
f(x) periodic with
period 2 and is odd. 1k
1 :
-1 s
P /os 1 x
(@
fx)
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2.2.7 Exercises

14 Which of the functions y = f(x) whose graphs are 15 Three different functions, f(x), g(x) and h(x), have

shown in Figure 2.27 are odd, even or neither odd the same graph on [0, 2] as shown in Figure 2.28.
nor even? On separate diagrams, sketch their graphs for
v Ny [—4, 4] given that
(a) f(x)is periodic with period 2;
\ (b) g(x) is periodic with period 4 and is even;
o "~ D Vx (c) h(x) is periodic with period 4 and is odd.
(a) (b) YA
I
y y

/|

© /

(@)
Figure 2.28 Graph of Question 15.

A\
\/

(e)

Figure 2.27 Graphs of Question 14.

i

O X
[\/ * ) is an odd function and that any function f{x) may be

/-\ 16 ShOW that
h(x) = $[f(x) = f(—x)]

written as the sum of an odd and an even function.
Illustrate this result with f(x) = (x — 1)°.

Linear and quadratic functions

2.3.1

Among the more commonly used functions in engineering contexts are the linear and
quadratic functions. This is because the mathematical models of practical problems
often involve linear functions and also because more complicated functions are often well
approximated locally by linear or quadratic functions. We shall review the properties of
these functions and in the process describe some of the contexts in which they occur.

Linear functions

The linear function is the simplest function that occurs in practical problems. It
has the formula f(x) = mx + ¢ where m and c¢ are constant numbers and x is the
unassigned or independent variable as usual. The graph of f(x) is the set of points (x, y)
where y = mx + ¢, which is the equation of a straight line on a cartesian coordinate
plot (see Section 1.4.2). Hence, the function is called the linear function. An example
of a linear function is the conversion of a temperature 7,°C to the temperature
T,°F. Here
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Example 2.13

Solution

Example 2.14

Solution

T,=2%T, + 32

and m = 2 with ¢ = 32.
To determine the formula for a particular linear function the two constants m and ¢
have to be found. This implies that we need two pieces of information to determine f(x).

A manufacturer produces 5000 items at a total cost of £10000 and sells them at £2.75
each. What is the manufacturer’s profit as a function of the number x of items sold?

Let the manufacturer’s profit be £P. If x items are sold then the total revenue is £2.75x,
so that the amount of profit P(x) is given by

P(x) = revenue — cost = 2.75x — 10000

Here the domain of the function is [0, 5000] and the range is [—10000, 3750]. This
function has a zero at x = 3636%. Thus to make a profit, the manufacturer has to sell
more than 3636 items. (Note the modelling approximation in that, strictly, x is an
integer variable, not a general real variable.)

If we know the values that the function f(x) takes at two values, x, and x,, of the inde-
pendent variable x we can find the formula for f(x). Let f(x,) = f, and f(x,) = f;; then

X — X X — X

f) = Jot

Xo — X X1 — Xo

h (2.6)

This formula is known as Lagrange’s formula. It is obvious that the function is linear
since we can arrange it as

f —fo}_i_{?ﬁfo —xofl}

X — Xo X = Xo

f(X)=){

The reader should verify from (2.6) that f(x,) = f; and f(x,) = f;.

Use Lagrange’s formula to find the linear function f(x) where f(10) = 1241 and
f(15) = 1556.

Taking x, = 10 and x; = 15 so thatfo = 1241 and f, = 1556 we obtain

X -
fo) = 0= (1241)+ 5_ (1556)

= §(1556 — 1241) + 3(1241) — 2(1556)

§(315) + (3723 — 3112) = 63x + 611
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Example 2.15

Solution

2.3.2

The rate of change of a function, between two values x = x, and x = x, in its domain,
is defined by the ratio of the change in the values of the function to the change in the
values of x. Thus

change in values of f(x)  f(x;) — f(xo)
change in values of x X — X

rate of change =

For a linear function with formula f(x) = mx + ¢ we have

(mx; + ¢) — (mxy + ¢)

rate of change =

X1 — Xo
_ m(x; — Xo) _
X1 — Xo

which is a constant. If we know the rate of change m of a linear function f(x) and the
value f; at a point x = x,, then we can write the formula for f(x) as

f(x) = mx + fy — mx,

For a linear function, the slope (gradient) of the graph is the rate of change of the function.

The labour cost of producing a certain item is £21 per 10000 items and the raw
materials cost is £4 for 1000 items. Each time a new production run is begun, there is a
set-up cost of £8. What is the cost, £C(x), of a production run of x items?

Here the cost function has a rate of change comprising the labour cost per item
(21/10000) and the materials cost per item (4/1000). Thus the rate of change is 0.0061.
We also know that if there is a production run with zero items, there is still a set-up
cost of £8 so f(0) = 8. Thus the required function is

C(x) = 0.0061x + 8

Least squares fit of a linear function to experimental data

Because the linear function occurs in many mathematical models of practical problems,
we often have to ‘fit’ linear functions to experimental data. That is, we have to find the
values of m and ¢ which yield the best overall description of the data. There are two
distinct mathematical models that occur. These are given by the functions with formulae

(@ y=ax and (b)) y=mx+c

For example, the extension of an ideal spring under load may be represented by a
function of type (a), while the velocity of a projectile launched vertically may be
represented by a function of type (b).

From experiments we obtain a set of data points (x,, y,), k = 1, 2, ..., n. We wish
to find the value of the constant(s) of the linear function that best describes the
phenomenon the data represents.
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Example 2.16

Figure 2.29
Data of Example 2.16.

Solution

Case (a): the theoretical model has the form y =ax

The difference between theoretical value ax, and the experimental value y, at x, is
(ax, — y,). This is the ‘error’ of the model at x = x,. We define the value of a for which
y = ax best represents the data to be that value which minimizes the sum § of the
squared errors:

S = z(dxk - )’

k=1
(Hence the name ‘least squares fit’: the squares of the errors are chosen to avoid simple

cancellation of two large errors of opposite sign.)
The sum above, S, is minimized when

n
2 XYk
k=1
n
DI

k=1

2.7)

a =

Take care not to claim too high precision in the calculated value of a.

Find the value of a which provides the least squares fit to the model y = ax for the data
given in Figure 2.29.

k 1 2 3 4 5 6
X 50 100 150 200 250 300
¥ 5 8 9 11 12 15

From (2.7) the least squares fit is provided by

ol

Here
6
Zxkyk = 250 + 800 + 1350 + 2200 + 3000 + 4500 = 12100
k=1

and

6
ZX,f = 50> + 100* + 150> + 200* + 250* + 300* = 227500

so that a = 121/2275 = 0.053.
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Example 2.17

Figure 2.30
Data of Example 2.17.

Solution

Case (b): the theoretical model has the formy = mx + ¢

Analagous to case (a), this can be seen as minimizing the sum of squared errors

S =Y (mx, + ¢ = y)?

k=1

It can be shown that S is minimized where

n
2 XY — nxy
k=1

m=*  and c=7-mF 2.8)

n
2 x} — nx?
k=1

To avoid loss of significance, the formula for m is usually expressed in the form

Y (= DOk~ )
k=1

m = = (2.9)
z (3 = %)
k=1

We can observe that in this case the best straight line passes through the average data
point (X, y), and the best straight line has the formula

y=mx+c

with ¢ =y — mX.

Find the values of m and ¢ which provide the least squares fit to the linear model
y = mx + c for the data given in Figure 2.30.

k 1 2 3 4 5
X 0 1 2 3 4
Y 1 1 2 2 3

From (2.9) the least squares fit is provided by

> (= Oy - )

k=1
n
2 (x, = %)
k=1

Here X = £(10) = 2.0,5 = +(9) = 1.8, X{_,(x, — X)(y, — ) = 5.0 and ¥} _, (x, — X)* = 10,
so that

m = 0.5
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17

18

19

20

and hence ¢ = 1.8 — 0.5(2) = 0.8.

Thus the best straight line fit to the data is provided by y = 0.5x + 0.8.

The MATLAB commands to reproduce the answer are given below (see Section 2.4.4).

The formula for case (b) is the one most commonly given on calculators and in com-
puter packages (where it is called linear regression). It is important to have a theoret-
ical justification to fitting data to a function, otherwise it is easy to produce nonsense.
For example, the data in Example 2.16 actually related to the extension of a soft spring
under a load, so that it would be inappropriate to fit that data to y = mx + c. A non-
zero value for ¢ would imply an extension with zero load! A little care is needed when
using computer packages. Some use the form y = ax + b and others the formy = a +

bx as the basic formula.

2.3.3 Exercises

Obtain the formula for the linear functions f(x)
such that

(@ f(0) =3and f(2) = —1
() f(—1)=2and f(3) =4

(c) f(1.231) = 2.791 and £(2.492) = 3.112
21

Calculate the rate of change of the linear functions
given by

@) fx) =3x—2
(b) f(x) =2 —3x
() f(—=1)=2and f(3) = 4

The total labour cost of producing a certain
item is £43 per 100 items produced. The raw
materials cost £25 per 1000 items. There is a
set-up cost of £50 for each production run.
Obtain the formula for the cost of a production
run of x items.

The manufacturer decides to have a production
run of 2000 items. What is its cost? If the items
are sold at £1.20 each, write down a formula for
the manufacturer’s profit if x items are sold. What
is the breakeven number of items sold?

22

23

Find the least squares fit to the linear function

y = ax of the data given in Figure 2.31.

k 1 2 3 4 5
X, 10.1 10.2 10.3 10.4 10.5
Yo 3.10 3.12 3.21 3.25 3.32

Figure 2.31 Table of Question 20.

Find the least squares fit to the linear function
y = mx + c for the experimental data given in
Figure 2.32.

k 1 2 3 4 5
X 55 60 65 70 75
Vi 107 109 114 118 123

Figure 2.32 Table of Question 21.

On the graph of the line y = x, draw the lines y = 0,

x = a and x = b. Show that the area enclosed by

these four lines is £ (b* — &*) (assume b > a).
Deduce that this area is the average value of

y = x on the interval [a, b] multiplied by the size of

that interval.

The velocity of an object falling under gravity is
v(¢) = gt where ¢ is the lapsed time from its release
from rest and g is the acceleration due to gravity.
Draw a graph of v(f) to show that its average
velocity over that time period is %gt and deduce that
the distance travelled is £.g7>.
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2.3.4 The quadratic function

Figure 2.33
(@)a>0;(b)a<0.

Example 2.18

Solution

The general quadratic function has the form
f(x) =ax*+ bx + ¢

where a, b and ¢ are constants and a # 0. By ‘completing the square’ we can show that
(see Example 1.15)

b2
f(x) = a{(x + Zj +

which implies that the graph of f(x) is either a ‘cup’ (@ > 0) or a ‘cap’ (a < 0), as shown
in Figure 2.33, and is a parabola.

We can see that, because the quadratic function has three constants, to determine
a specific quadratic function requires three data points. The formula for the quad-
ratic function f(x) taking the values f, f;, f> at the values x,, x;, x,, of the independent
variable x, may be written in Lagrange’s form:

(2.10)

4ac — b*
4a?

X = x)(x — x5) (x = x)(x = x7)

(= x9)( = x7)

(x = xp)(x — x,)

(X1 = x0)(x; — xp)

f) ==

(xo = xD(xg — X2) 0

h +

h

(2.11)

The right-hand side of this formula is clearly a quadratic function. The reader should
spend a few minutes verifying that inserting the values x = x,, x, and x, yields f(x,) = f;,

f(x) = fiand f(x,) = fo.

y y
3r 3r
2F 2
1+ 1+

(a) (b)

Find the formula of the quadratic function which satisfies the data points (1, 2), (2, 4)
and (3, 8).

Choose x, = 1, x;, = 2 and x, = 3 so that f, = 2, f, = 4 and f, = 8. Then using Lagrange’s
formula (2.10) we have
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Example 2.19

Solution

Example 2.20

oy (x=2)(x=3) (x=D(x=3) (x=Dx=2)
1= -3 P " ecne—3» P oY

=x—2x—3) —4x—Dx—=3)+4x—Dx—2)=x*—x+2

Lagrange’s formula is not always the best way to obtain the formula of a quadratic
function. Sometimes we wish to obtain the formula as an expansion about a specific
point, as illustrated in Example 2.19.

Find the quadratic function in the form
f)=Ax—2+Bx—-2)+C
which satisfies f(1) = 2, f(2) = 4, f(3) = 8.

Setting x = 1, 2 and 3 in the formula for f(x) we obtain
Jf)A-B+C=2
fQ2): c=4
fBXA+B+C=28

from which we quickly find A = 1, B = 3 and C = 4. Thus
f)=x—2"+3x—2)+4

The way we express the quadratic function depends on the problem context. The
form f(x) = ax® + bx + c is convenient for values of x near x = 0, while the form
f(x) = A(x — x,)* + B(x — x,) + Cis convenient for values of x near x = x,. (The second
form here is sometimes called the Taylor expansion of f(x) about x = x,.) This is
discussed later for the general function (see Section 9.4), where we make use of dif-
ferential calculus to obtain the expansion.

Since we can write f(x) in the form (2.10), we see that when b* > 4ac we can
factorize f(x) into the product of two linear factors and f(x) has two zeros given as
in (1.8) by

Loht \(b? - 4ac)
2a

When b < 4ac, f(x) cannot be factorized and does not have a zero. In this case it is
called an irreducible quadratic function.

Complete the squares of the following quadratics and specify which are irreducible.
@y=x*+x+1 (b)) y=3*—2x—1
© y=4+3x—x* ) y=2x—1—2"
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Solution

(a) Inthis case,a = b = ¢ = 1 so that b* — 4ac = —3 < 0 and we deduce that the quadratic

is irreducible. Alternatively, using the method of completing the square we have
y=+x+l=(x+ 42+ 2=+ b2 ()

Since this is a sum of squares, like A*> + B2, it cannot, unlike a difference of squares,

A? — B* = (A — B)(A + B), be factorized. Thus this is an irreducible quadratic function.

(b) Herea = 3, b = —2 and ¢ = —1, so that b*> — 4ac = 16 > 0 and we deduce that
this is not an irreducible quadratic. Alternatively, completing the square we have

y=3x—-2x—1=3>—3x— 3
=3[ = 9" — 51 =3l = ) — 3@ — 3) + 3]
=3x—1lx+3=x—DGx+ 1)
Thus this is not an irreducible quadratic function.

(¢c) Herea = —1,b = 3 and ¢ = 4, so that b* — 4ac = 25 > 0 and we deduce that the
quadratic is irreducible. Alternatively, completing the square we have

y=4+3x—x"=4+5—(x—3
=B - x-=B-6c-IB+ -
=@ - +x)

Thus y is a product of two linear factors and 4 + 3x — x*is not an irreducible quadratic
function.

(d) Herea = —2,b = 2 and ¢ = —1, so that »* — 4ac = —4 < 0 and we deduce that
the quadratic is irreducible. Alternatively we may complete the square

y=2x—1—-2x"=—1—-2(x*—x)
=-l+7-20—9=-7-2x—9
= 23 + (x — 7]
Since the term inside the square brackets is the sum of squares, we have an irreducible
quadratic function.

The quadratic function
fx) =ax*+ bx + ¢

has a maximum when ¢ < 0 and a minimum when a > 0, as illustrated earlier in
Figure 2.33. The position and value of that extremal point (that is, of the maximum
or the minimum) can be obtained from the completed square form (2.10) of f(x).
These occur where

b
x+—=0
2a

Thus, when a > 0, f(x) has a minimum value (4ac — b*)/(4a) where x = —b/(2a).
When a < 0, f(x) has a maximum value (4ac — b*)/(4a) at x = —b/(2a).

This result is important in engineering contexts when we are trying to optimize costs
or profits or to produce an optimal design (see Section 2.10).
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Example 2.21

24

25

26

27

28

@y=x"+x+1
© y=4+3x—x*

Solution

() y=x>+x+1=@x+5>+3

Find the extremal values of the functions
b) y=3x>—2x—1
d y=2x—1-—2"

This uses the completed squares of Example 2.20.

Clearly the smallest value y can take is 3 and this occurs when x + 5 = 0; that is, when
i

X = 7.

(b) y=3x>—2x— 1 =3x— 4> -3

Clearly the smallest value of y occurs when x = + and is equal to —3.

() y=4+3x—x"=%2 - (x—

Clearly the largest value y can take is 2 and this occurs when x = 3.

(d)y=2x—1—-2=—% — 2(x — 3

. 1 1
Thus the maximum value of y equals —3 and occurs where x = 7.

Confirm that these results conform with the theory above.

2.3.5 Exercises

Find the formulae of the quadratic functions f(x)
such that

(a) f(1) = 3,f(2) = 7 and f(4) = 19
(b) f(=1) = 1,f(1) = —land f(4) = 2

Find the numbers A, B and C such that
f(x) =x*>—8x + 10
=Ax —2*+Bx—-2)+C
Determine which of the following quadratic
functions are irreducible.
(@ fx)=x>+2x+3 ®) fx) =4x> — 12x+ 9
(©) f(x) =6 —4x —3x* (d) f(x) =3x—1—5

Find the maximum or minimum values of the
quadratic functions given in Question 26.

For what values of x are the values of the quadratic
functions below greater than zero?

(@) f(x) =x"—6x+8 ®) ) =15+x— 247

29 A car travelling at u mph has to make an emergency

stop. There is an initial reaction time 7', before the
driver applies a constant braking deceleration of

a mph?. After a further time 7, the car comes to
rest. Show that 7, = u/a and that the average speed
during the braking period is #/2. Hence show that
the total stopping distance D may be expressed

in the form

D = Au + Bu’

where A and B depend on T, and a.

The stopping distances for a car travelling
at 20 mph and 40 mph are 40 feet and 120 feet
respectively. Estimate the stopping distance for
a car travelling at 70 mph.

A driver sees a hazard 150 feet ahead. What
is the maximum possible speed of the car at that
moment if a collision is to be avoided?
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Polynomial functions

Example 2.22

Solution

A polynomial function has the general form
f=ax"+a,_x"'"+..+ax+a, xinR (2.12)

where n is a positive integer and a, is a real number called the coefficient of x’,
r=20,1,..., n. The index n of the highest power of x occurring is called the degree of
the polynomial. For n = 1 we obtain the linear function

fx) =ax + a,
and for n = 2 the quadratic function
f(x) = a,x* + ax + a,

and so on.

We obtained Lagrange’s formulae for linear and for quadratic functions earlier
(see Sections 2.3.1 and 2.3.4). The basic idea of the formulae can be used to obtain a
formula for a polynomial of degree n which is such that f(x,) = f,, f(x,) = f1.f(x2) = fo, ...,
f(x,) = f,. Notice that we need (n + 1) values to determine a polynomial of degree n.
We can write Lagrange’s formula in the form.

fx) = L(0)fy + L0fi + L)f, + ...+ LKXS,

where Ly(x), L(x), ..., L,(x) are polynomials of degree n such that
Li(x) =0, x;7#x (orj#k)
Li(x) =1

This implies that L, has the form

(x = x)(x = x)(x = x) ... (X = X)X = %) ... (X — X))

(o = x0) (5 = XD = X2) oo (g = X DX = Xgery) -o0 (X — X))

L(x) =
(It is easy to verify that L, has degree n and that L,(x;) = 0, j # k, and L,(x;) = 1.)
Find the cubic function such that f(—3) = 528, f(0) = 1017, f(2) = 1433 and f(5) = 2312.

Notice that we need four data points to determine a cubic function. We can write
J) = Lox)fy + Lix)fi + L) f; + Ly(0)f;
where x, = =3, f, = 528,x, = 0,f, = 1017, x, = 2, f, = 1433, x; = 5 and f; = 2312. Thus
(x=0)(x-=2)(x=5) _
(-3-0)(-3-2)(-3-5)

_ () =) =5 _ L = 4x? —11x + 30)
0+3)(0-2)0-5 -

Ly(x) =

25(x* = 7x% +10x)

Li(x)



98 FUNCTIONS

24.1

Example 2.23

Solution

(x +3)(x —0)(x —35) _
Q+3)2-0)2-5
(43 -0(x-2) _ (3 4 22 — 6x)
G+HE-0G5-2)

Ly(x) = —5(x? = 2x? — 15x)

Ly(x) =

Notice that each of the L,’s is a cubic function, so that their sum will be a cubic function
fx) = =35 (&3 — 7% + 10x)(528) + 35(x* — 4x> — 11x + 30)(1017)
—35(x® — 2% — 15x)(1433) + 135 (& + x> — 6x)(2312)
= x>+ 10x* + 184x + 1017

Basic properties

Polynomials have two important mathematical properties.

Property (i)
If two polynomials are equal for all values of the independent variable then corres-
ponding coefficients of the powers of the variable are equal. Thus if

f=ax"+a,_x"'"+..+ax+a,
gx)=bx"+b_x"'+...+bx+b,
and
f(x) = g(x) forallx
then
a,=b;, fori=0,1,2,....,n

This property forms the basis of a technique called equating coefficients, which will
be used later in determining partial fractions (see Section 2.5).

Property (ii)
Any polynomial with real coefficients can be expressed as a product of linear and
irreducible quadratic factors.

Find the values of A, B and C that ensure that
X+ 1=Ax—1)+Bx+2)+Cx*+2)

for all values of x.

Multiplying out the right-hand side, we have
X+0x+1=C>+A+Bx+(—A+2B+20)

Using Property (i), we compare, or equate, the coefficients of x>, x and x° in turn to give
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24.2

Example 2.24

Solution

c=1
A+B=0
—A+2B+2C=1
which we then solve to give
A=3 B=-3 C=1
Checking, we have

- -5+ + @+ =Fx—F—Fx—F+>+2=x"+1

Factorization

Although Property (ii) was known earlier, the first rigorous proof was published by
Gauss in 1799. The result is an ‘existence theorem’. It tells us that polynomials can be
factored but does not indicate how to find the factors!

Factorize the polynomials
(@ x* = 3x" + 6x — 4 (b) x*—16 (c) x*+ 16

(a) The function f(x) = x> — 3x* + 6x — 4 clearly has the value zero at x = 1. Thus
x — 1 must be a factor of f(x). We can now divide x> — 3x*> + 6x — 4 by x — 1 using
algebraic division, a process akin to long division of numbers. The process may be set out
as follows.
Step 1

x— 10 =32+ 6x— 4)
In order to produce the term x°, x — 1 must be multiplied by x* Do this and subtract the
result from x* — 3x? + 6x — 4.

x—1(x* — 3x* + 6x — 4)x?

x3 _ x2
—2x*+ 6x — 4

Step 2

Now repeat the process on the polynomial —2x* + 6x — 4. In this case, in order to
eliminate the term —2x% we must multiply x — 1 by —2x.

x— 103 = 3x* + 6x — x> — 2x
RN
—2x* 4+ 6x — 4
—2x* + 2x
4dx — 4
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Step 3

Finally we must multiply x — 1 by 4 to eliminate 4x — 4 as follows:

x— 1 =3+ 6x —4x*—2x+ 4
= 2
-2+ 6x — 4
—2x% + 2x
4x — 4
dx — 4
Thus
f)=x— D> —2x + 4)

The quadratic factor x* — 2x + 4 is an irreducible factor, as is shown by ‘completing
the square’:

=2 +4=x-17+3

(b) The functions f,(x) = x* and f,(x) = x* — 16 have similar graphs, as shown in
Figures 2.34(a) and (b). It is clear from these graphs that f,(x) has zeros at two values of
x, where x* = 16; that is, at x> = 4 (x> = —4 is not allowed for real x). Thus the zeros of

f,are atx = 2 and x = —2, and we can write
Hx)=x*—16=(@*—Hx* + 4)
=(x—2)x+ 2>+ 4)

(c) The functions f,(x) = x* and fy(x) = x* + 16 have similar graphs, as shown in
Figures 2.34(a) and (c). It is clear from these graphs that f;(x) does not have any real
zeros, so we expect it to be factored into two quadratic terms. We can write

P16 = (7 + 47 — 8x?
which is a difference of squares and may be factored.

(2 + 42 — 8x2 = (2 + 4 — (x\8)% = [(x* + 4) — xV8][(x + 4) + xV8]

Y Ly
y
10
10 r 20 L
. . \ /
-2 (0] 2 x -2 (0] 2 X 10 |
-10 | —1or . .
) 0 2 x

(a)

(b) (c)

Figure 2.34 Graphs of (a) y = fi(x) = x*, (b) y = f,(x) = x* — 16 and (¢c) y = fi(x) = x* + 16.
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24.3

Thus we obtain
fi0) = x4+ 16 = (2 — 2x\2 + 4> + 2x\2 + 4)

Since x24+2x\2 + 4 = x+£ \/2)2 + 2, we deduce that these are irreducible quadratics.

Nested multiplication and synthetic division

In Example 2.24(a) we found the image value of the polynomial at x = 1 by direct
substitution. In general, however, the most efficient way to evaluate the image values
of a polynomial function is to use nested multiplication. Consider the cubic function

f) =4x  —5x* +2x + 3
This may be written as
JSx)=[(4x — Sx + 2]x + 3

We evaluate this by evaluating each bracketed expression in turn, working from the
innermost. Thus to find f(6), the following steps are taken:

(1) Multiply 4 by x and subtract 5; in this case 4 X 6 — 5 = 19.
(2) Multiply the result of step 1 by x and add 2; in this case 19 X 6 + 2 = 116.
(3) Multiply the result of step 2 by x and add 3; in this case 116 X 6 + 3 = 699.

Thus f(6) = 699.
On a computer this is performed by means of a simple recurrence relation. To
evaluate

f) =ax"+a,_x"""+..+a,
at x = ¢, we use the formulae

b, 1= a,

b, ,=1tb,_, + a,_,

b, s=1th, , + a,,

b, =th, + a,
b, = th, + a,
(o) = thy + a,

which may be summarized as

bn—l = a,
bn—k = tbn—k+1 + a4y pn1 (k = 2a 3’ [RXIE) }’l) (2'13)
S(#) = tby + a,

(The reason for storing the intermediate values b, will become obvious below.)
Having evaluated f(x) at x = ¢, it follows that for a given ¢

Jo) —f(n =0
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at x = t; that is, f(x) — f(¢) has a factor x — ¢. Thus we can write

fO) —fO ==, x" "+ x" + .. +ex+c
Multiplying out the right-hand side, we have

SO = ft) = ¢, X" + (C — 16, X"+ (s — 16, X" L () — 1o)X + (1)
so that we may write

FO) = x" 4 (Cpey — e, X" 1 4 €y — te,_)X" 24 ...+ (¢ — te)x + f() — tc,
But

f=ax"+a,_x""+a, x"*+..+ax+a

So, using Property (i) of Section 2.4.1 and comparing coefficients of like powers of x,
we have

O
Cp — tcn*l =y lmplylng Cra = tcn*l + Ay

n

Cp3 — tcn*Z ) lmplylng Cp3 = tcn*Z + Ay

¢y — tc, =a, implying ¢,=tc, + a
f(t) — tcy =a, implying f(f) = tc, + a,

Thus ¢, satisfies exactly the same formula as b,, so that the intermediate numbers gener-
ated by the method are the coefficients of the quotient polynomial. We can then write

) = (b x" ' + b, x" 2+ ...+ bx + b)(x — D) + f(F) (2.14)
or

SO _ o X" b, X" L+ b+ by + S

x—t x—t

Result (2.14) tells us that if the polynomial f(x) given in (2.12) is divided by x — ¢ then
this results in a quotient polynomial g(x) given by

qgx) =b,_x"'+ ...+ b,

and a remainder r = f(¢) that is independent of x. Because of this property, the method
of nested multiplication is sometimes called synthetic division.

The coefficients b, i = 0, ..., n — 1, of the quotient polynomial and remainder term
f(¢) may be determined using the formulae (2.13). The process may be carried out in
the following tabular form:

a, ay-y a, e a a, ay
X t th, th, , s th, th, th,
! ol ol ol
b, b, b, s e b, by r
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Example 2.25

Solution

Example 2.26

Solution

After the number below the line is calculated as the sum of the two numbers imme-
diately above it, it is multiplied by ¢ and placed in the next space above the line as
indicated by the arrows. This procedure is repeated until all the terms are calculated.

The method of synthetic division could have been used as an alternative to algebraic
division in Example 2.24.

Show that f(x) = x* — 3x* + 6x — 4 is zero at x = 1, and hence factorize f(x).

Using the nested multiplication procedure to divide x* — 3x* + 6x — 4 by x — 1 gives the
tabular form

as a, a ay
-3 6 —4
X 1 0 1 -2 4
el el el
1 -2 4 0

b, b, by f)

Since the remainder f(1) is zero, it follows that f(x) is zero at x = 1. Thus
fO = —2x+4dHx—1)

and we have extracted the factor x — 1. We may then examine the quadratic factor
x> — 2x + 4 as we did in Example 2.24(a) and show that it is an irreducible quadratic
factor.

Sometimes in problem solving we need to rearrange the formula for the polynomial
function as an expansion about a point, x = a, other than x = 0. That is, we need to
find the numbers Ay, A, ..., A, such that

f=ax"+a_x""'"+..+ax+a,
=Ax—a)+A_(x—a"'+.. . +AKx—a)+A

This is termed the Taylor expansion of f(x) about x = a.

This transformation can be achieved using the technique illustrated for the quadratic
function in Example 2.19 which depends on the identity property of polynomials. It can
be achieved more easily using repeated synthetic division, as is shown in Example 2.26.

Obtain the expansion about x = 2 of the function y = x* — 3x* + 6x — 4.

Using the numerical scheme as set out in Example 2.25 we have

1 -3 6 —4
X2 0 2 =2 8
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244

Example 2.27

so that
X =3t —4=x—-2)x*—x+4) +4

Now repeating the process with y = x> — x + 4, we have

1 -1 4
X2 0 2 2
1 1 6

so that
X=—x+4=x—-2Dx+1)+6

and

X=3+x—4=x—-2Dx—-Dx+1)+6]+4
Lastly,

x+1=x—-2)+3
so that

y=& =2 —2+3(x—2)+6]+4
=@x—-2 +3x—27+6(x—2)+4
For hand computation the whole process can be set out as a single table:
1 -3 6 —4
X2 0 2 -2 8

1 -1 4 4
X2 0 2 2

1 1 :6
X2 0 2

1 :3

Here, then, 1, 3, 6 and 4 provide the coefficients of (x — 2)*, (x — 2)%, (x — 2)" and (x — 2)°

in the Taylor expansion.

Roots of polynomial equations

Polynomial equations occur frequently in engineering applications, from the identifica-
tion of resonant frequencies when concerned with rotating machinery to the stability
analysis of circuits. It is often useful to see the connections between the roots of a

polynomial equation and its coefficients.

Show that any real roots of the equation
=3 +6x—4=0

lie between x = 0 and x = 2.
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Solution

From Example 2.26 we know that
X=3+6x—4=x—-2P +3x—2>*+6(x—2)+4

Now if x > 2, (x — 2)°, (x — 2)* and (x — 2) are all positive numbers, so that for x > 2
(x— 2P +3(x— 2P +6(x —2) +4>0

Thus x* — 3x> + 6x — 4 = 0 does not have a root that is greater than x = 2.

Similarly for x < 0, x* and x are both negative and x* — 3x* + 6x — 4 < 0 for x < 0.
Thus x* — 3x* + 6x — 4 = 0 does not have a root that is less than x = 0. Hence all the real
roots of

X =3+6x—4=0

lie between x = 0 and x = 2.

We can generalize the results of Example 2.27. Defining
@)=Y Ax —ay
k=0

then the polynomial equation f(x) = 0 has no roots greater than x = q if all of the A;’s
have the same sign and has no roots less than x = a if the A;’s alternate in sign.

The roots of a polynomial equation are related to its coefficients in more direct ways.
Consider, for the moment, the quadratic equation with roots & and 3. Then we can write
the equation as

x-—ax—=pB) =0
which is equivalent to
X*—(@+Bx+aB=0

Comparing this to the standard quadratic equation we have
a(x* — (@ + B)x + aB) = ax* + bx + ¢

Thus —a(a + B) = b and aaf3 = c so that
a+ B=—bla and «aff = cla

This gives us direct links between the sum of the roots of a quadratic equation and its
coefficients and between the product of the roots and the coefficients. Similarly, we can
show that if «, B and 7y are the roots of the cubic equation

ax* + bx* +ex+d=0

then

a+ B+y=—bla, aB+ By+ ya=cla, afy= —da
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Example 2.28

Solution

In general, for the polynomial equation
ax"+a,_x"'+a_x"*+...+ax+a=0

the sum of the products of the roots, k at a time, is (—1)a,_,/a,.

Show that the roots «, 3 of the quadratic equation
ax*+bx+c=0
may be written in the form

—b —(b* - dac) 2c
and
2a —b — \(b* — dac)

Obtain the roots of the equation
1.0x* +178x + 1.5=0

Assuming the numbers given are correctly rounded, calculate error bounds for the roots.

Using the formula for the roots of a quadratic equation we can select one root, « say,
so that

b (B2 — A
o= b —\(b* — 4ac)
2a

Then, since a3 = c/a, we have

ﬁ—L— 2¢
Cao —b—~(b* - dac)

Now consider the equation
1.0x* + 17.8x+ 15=0

whose coefficients are correctly rounded numbers. Using the quadratic formula we
obtain the roots

a= —17.71532756
and
B = —0.08467244

Using the results of Section 1.5.2 we can estimate error bounds for these answers as
shown in Figure 2.35. From that table we can see that using the form

—b = ~(b* — 4ac)
2a

to estimate o we have an error bound of 0.943, while using

—b + ~\(b* — 4ac)
2a
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gls%il:;:tizr;zserror Label Value Absolute error bound Relative error bound

bounds for roots.
a 1.0 0.05 0.05

17.8 0.05 0.0028

c 1.5 0.05 0.0333
v’ 316.84 1.77 0.0056
dac 6.00 0.50 0.0833
b* — 4dac 310.84 227 0.0073
d = \(b* — 4ac) 17.630 66 0.065 0.0037
—b—d —35.430 66 0.115 0.0032
(=b — d)/(2a) —17.715 33 0.943 0.0532
—b+d —0.169 34 0.115 0.6791
(—b + d)/(2a) —0.084 67 0.062 0.7291
2¢/(—=b — d) —0.084 67 0.003 0.0365

to estimate B we have an error bound of 0.062. As this latter estimate of error is almost
as big as the root itself we might be inclined to regard the answer as valueless. But
calculating the error bound using the form

2c

P== J(b? = 4ac)

gives an estimate of 0.003. Thus we can write
a=—177+5% and B = —0.085=+4%

The reason for the discrepancy between the two error estimates for 3 lies in the fact that
in the traditional form of the formula we are subtracting two nearly equal numbers, and
consequently the error bounds dominate.

Example 2.29  The equation 3x* — x> — 3x + 1 = 0 has a root at x = 1. Obtain the other two roots.
Solution If @, B and 7y are the roots of the equation then

a+tB+y=1
aB + By +ya=—3

apy = —3

Setting o = 1 simplifies these to
B+y=-%
Bty+tpBy=-1
By=—3

Hence y = —1/(38) and 38* + 28 — 1 = 0. Factorizing this equation gives
GB—DHEB+1)=0

from which we obtain the solution x = —1 and x = +.
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The numerical method most often used for evaluating the roots of a polynomial is the
Newton—Raphson procedure. This will be described later (see Section 9.4.8).

In MATLAB a polynomial is represented by an array of its coefficients, with the
highest coefficient listed first. For example, the polynomial function

f(x) = x> — 5x* — 17x + 21
is represented by
f = [1 -5 -17 21]

The roots of the corresponding polynomial equation f(x) = O are obtained using the
command roots (£), so for the above example the command

r = roots(f)
returns the roots as

r = 7.0000
-3.0000
1.0000

which also indicate that the factors of f(x) are (x — 7), (x + 3) and (x — 1). It is noted
that the output gives the roots r as a column array of numbers (and not a row array).
If the roots are known and we wish to determine the corresponding polynomial f(x), having
unity as the coefficient of its highest power, then use is made of the command poly(r).
To use this command the roots » must be specified as a row array, so the commands

r=[7 -3 1]
f = poly(r)

return the answer
f =1 -5 =17 21
indicating that the polynomial is
fx) =x> —5x* — 17x + 21

To determine the polynomial of degree n that passes through n + 1 points we
use the command polyfit(x,y,n); which outputs the array of coefficients of
a polynomial of order n that fits the pairs (x, y). If the number of points (x, y) is
greater than n then the command will give the best fit in the least squares sense.
Check that the commands

x = [-3 0 2 5]; y = [528 1017 1433 2312];
f = polyfit(x,y,3)

reproduce the answer of Example 2.22 and that the commands

x = [01 2 3 4]; y=1[112 2 3];
polyfit(x,y, 1)

reproduce the answer to Example 2.17.
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Graphs of polynomial functions may be plotted using the commands given
earlier (see Section 2.2.1). The result of multiplying two polynomials f(x)
and g(x) is obtained using the command conv(f, g), where f and g are the
array specification of f(x) and g(x) respectively. With reference to Example 2.25
confirm that the product f(x) = (x* — 2x + 4)(x — 1) is obtained using the
commands

fl1 = [1 -2 4]; f2 = [1 -1];
f = conv(fl, f2)

The division of two polynomials f(x) and g(x) is obtained, by the process of decon-
volution, using the command

[0,R] = deconv(f,q)

which produces two outputs Q and R, with O being the coefficients of the quotient
polynomial and R the coefficients of the remainder polynomial. Again with reference
to Example 2.25 check that x* — 3x* + 6x — 4 divided by x — 1 gives a quotient
x> — 2x + 4 and a remainder of zero.

Using the Symbolic Math Toolbox, operations on polynomials may be undertaken
in symbolic form. Some useful commands, for carrying out algebraic manipulations,
are:

(a) factor command

If f(x) is a polynomial function, expressed in symbolic form, with rational
coefficients (see Section 1.2.1) then the commands

Syms x
f = factor(f(x))

factorize f(x) as the product of polynomials of lower degree with rational coefficients.
For example, to factorize the cubic f(x) = x* — 5x> — 17x + 21 the commands

syms x
f = factor(x"3 - 5*x"2 - 17*x + 21)

return
f = (x-1)*(x - 7)*(x + 3)

In cases of using hard-to-read output the pretty command proves useful.
Using the factor command, confirm the factorization of polynomials (a) and
(b) in Example 2.24.

(b) horner command

This command transforms a polynomial f(x) expressed in symbolic form into its
nested (or Horner) representation. For example, the commands

syms x
f = horner(4*x"3 - 5*x"2 + 2*x + 3)



110 FUNCTIONS

return
f =3+ (2 + (-5 + 4*x)*x)*x

which confirms the nested representation at the outset of Section 2.4.3.

(¢) collect command

This collects all the coefficients with the same power of x. For example, if
fx) =4x(x* + 2x + 1) — 5(x(x + 2) — x*) + (x + 3)°

then the commands

syms x
f = collect(4*x* (x"2 + 2*x + 1) —5%(x*(x + 2) - x"3)
+ (x + 3)°3);

return
f = 10x° + 12x° + 21x + 27

The collect command may also be used to multiply two polynomials. With
reference to Example 2.25 the product of the two polynomials x* — 2x + 4 and
x — 1 is returned by the commands

syms x
f = collect((x — 1)*(x"2 - 2*x + 4));

as

f=x°- 3% + 6x - 4

(d) simplify command

This is a powerful general purpose command that can be used with a wide range of
functions. For example, if f(x) = (9 — x»/(3 + x) then the commands

syms X
f = simplify((9 - x*2)/(3 + x))

return

f = -x + 3

(e) expand command

This is another general purpose command which can be used with a wide range
of functions. It distributes products over sums and differences. For example, if
f(x) = a(x + y) then the commands

syms x a 'y
f = expand(a*(x + y));
pretty (f)
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return

f = ax + ay

(f) solve command

If f(x) is a symbolic expression in the variable x (the expression may also include
parameters) then the command

s = solve (f)

seeks to solve the equation f(x) = 0, returning the solution in a column array. To
solve an equation expressed in the form f(x) = g(x) use is made of the command

s = solve('f(x) = g(x)")

For example, considering the general quadratic equation ax® 4+ bx + ¢ = 0 the
commands

syms x a b c
s = solve(a*x"2 + b*x + c);

return the well-known answers (see Example 1.21)

{ b+ (B - 4ac)1/2}
1/2

a

{ -b - (b® - 4ac)1/2}
1/2
a

2.4.5 Exercises

Check your answers using MATLAB whenever possible.

30 Factorize the following polynomial functions and 31  Find the coefficients A, B, C, D and E such that

sketch their graphs: y = 2x* — Ox® + 145x2 — Ox + 2

3 _ 2 _
(a) X 2x 11x + 12 — A(x _ 2)4 + B(X _ 2)3 + C(X _ 2)2

3 2 s,
(b) x* + 2x 5x — 6 +D(x—2) +E

@ x*+x*2-2
(d) 24" + 5¢° — 2% — 6x 32 Show that the zeros of
_ 4 _ .3 2 _
(€) 2x* —9x* + 14x* — 9x + 2 y=ai =5 45— 10+ 6

(f) x* + 5x* — 36 lie between x = 0 and x = 5.



112

FUNCTIONS

EE

34

35

36

37

Show that the roots «, B8 of the equation
X4+4x+1=0
satisfy the equations

o+ B =14
o+ B =52

Hence find the quadratic equations whose roots are

(a) o?and B° (b) o’ and B°

Use Lagrange’s formula to find the formula
for the cubic function that passes through the
points (5.2, 6.408), (5.5, 16.125), (5.6, 19.816)
and (5.8, 27.912).

Find a formula for the quadratic function whose
graph passes through the points (1, 403), (3, 471)
and (7, 679).

(a) Show that if the equation ax® + bx + ¢ = 0
has a repeated root a then 3aa® + b = 0.

(b) A can is to be made in the form of a circular
cylinder of radius r (in cm) and height % (in cm),
as shown in Figure 2.36. Its capacity is to be

0.51. Show that the surface area A (in cm?) of the can is

A=2m + 100
:
S
\_/
hem

- W

Figure 2.36

Using the result of (a), deduce that A has a
minimum value A* when 677> — A* = 0. Hence
find the corresponding values of r and A.

A box is made from a sheet of plywood, 2m X 1m,
with the waste shown in Figure 2.37(a). Find the
maximum capacity of such a box and compare it
with the capacity of the box constructed without the
wastage, as shown in Figure 2.37(b).

38

1m

2m

(b)
Figure 2.37

Two ladders, of lengths 12 m and 8 m, lean against
buildings on opposite sides of an alley, as shown
in Figure 2.38. Show that the heights x and y

(in metres) reached by the tops of the ladders in
the positions shown satisfy the equations

1 1 1
—_ 4 — ==
x y 4

and x> —y* =180

Figure 2.38

Show that x satisfies the equation
x* — 8x® — 80x* + 640x — 1280 = 0

and that the width of the alley is given by V(122 — x2),
where x, is the positive root of this equation. By first
tabulating the polynomial over a suitable domain

and then drawing its graph, estimate the value of x,
and the width of the alley. Check your solution of

the quartic (to 2dp) using a suitable software package.
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Rational functions

Example 2.30

Solution

Rational functions have the general form

Jx) 70

where p(x) and g(x) are polynomials. If the degree of p is less than the degree of ¢,
f(x) is said to be a strictly proper rational function. If p and ¢ have the same degree
then f(x) is a proper rational function. It is said to be an improper rational function
if the degree of p is greater than the degree of g.

An improper or proper rational function can always be expressed as a polynomial
plus a strictly proper rational function, for example by algebraic division.

Express the improper rational function

3xt +2x3 = 5x2 +6x =7
x2=2x+3

fx) =

as the sum of a polynomial function and a strictly proper rational function.

We observe that the numerator is a quartic in x and the denominator is a quadratic,
SO we can write

3t 4+ 263 — 532 + 6x — 7 Dx + E

> EAx2+Bx+C+27
x> —2x+3 x> —2x+3

Multiplying through by (x* — 2x — 3) yields

A+ 2 =5+ — 7= —2x+3)A*+Bx+ C) + Dx + E
Collecting terms of like powers of x on the right-hand side gives

Ax* + (B —2A)x*+ BA —2B+ Ox*+ 3D —2C+ D)x + 3C + E)

Comparing coefficients of like powers with those on the left-hand side yields
A=3
—2A+B=2=B =38
3A-2B+C=-5=C =2
3B—2C+D=6=D = —14
3C—E=-T=E =-13

Thus

14x + 13

=3+ 8 +2 -5
o * * 2 —2x+3
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2.5.1

Any strictly proper rational function can be expressed as a sum of simpler functions whose
denominators are linear or irreducible quadratic functions. For example,

x2 +1 1 . 1 B 4x +7
A+0)0 -2 +2x+x?) 1+x 51-x) 52+2x+x?)

These simpler functions are called the partial fractions of the rational function, and
are often useful in the mathematical analysis and design of engineering systems. Notice
that strictly the equality above is an identity since it is true for all values of x in the
domain of the expressions. Here we are following the common practice of writing =
instead of = (as we did previously (see Section 1.3.3)).

The construction of the partial fraction form of a rational function is the inverse
process to that of collecting together separate rational expressions into a single rational
function. For example,

1 N 1 3 4dx + 7
1+x 5101-x) 5Q2+2x+x?

G = 02+ 20 + 32 + (1 + 02 +2x + 1) — (1 + 1)1 — )(4x +7)
B 51+ x)(1 = )2 + 2x + x2)

52 -2 -+ Q+4x 437+ - (1 - x)@Ex +7)
5(1 — x2)(2 + 2x +x?)

52— x? = x) + 2+ 4x +3x7 + x%) — (T + 4x — Tx? — 4x7)
52 +2x — x% = 2x% — x%)

3 5+ 5x2
52 +2x —x* =2x3 —x%

3 1+ x2
24+ 2x —x%=2x3 - x*

But it is clear from this example that reversing the process (working backwards from
the final expression) is not easy, and we require a different method in order to find the
partial fractions of a given function. To describe the method in its full generality is
easy but difficult to understand, so we will apply the method to a number of commonly
occurring types of function in the next section before stating the general algorithm.

Partial fractions

In this section we will illustrate how proper rational functions of the form p(x)/g(x) may
be expressed in partial fractions.

(a) Distinct linear factors

Each distinct linear factor, of the form (x + «), in the denominator g(x) will give rise to

a partial fraction of the form , Where A is a real constant.

X+
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Example 2.31

Solution

Express in partial fractions the rational function

3x
(x=D(x+72)

In this case we have two distinct linear factors (x — 1) and (x + 2) in the denominator,
so the corresponding partial fractions are of the form
3x A N B Ax+2)+Bx-1)
x-Dx+2) x-1 x+2 (x=Dx+2)

where A and B are constants to be determined. Since both expressions are equal and
their denominators are identical we must therefore make their numerators equal, yielding

3x=A(x +2) + B(x — 1)

This identity is true for all values of x, so we can find A and B by setting first x = 1
and then x = —2. So

x=1 gives 3= A@3) + B(0); thatis A =1
and
x = —2 gives —6=A(0) + B(—3); thatis B=2

Thus

3x 1 N 2
x-Dx+2) x-1 x+2

X
When the denominator g(x) of a strictly proper rational function Z)EX; is a product of linear

X
factors, as in Example 2.31, there is a quick way of expressing zéx; in partial fractions.
Considering again Example 2.31, if
3x A B

G-Dat2) G- -2

then to obtain A simply cover up the factor (x — 1) in
3x
(x=-Dx+2)
and evaluate what is left at x = 1, giving

_ 3@) _
T -DA+2)
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Likewise, to obtain B cover up the factor (x + 2) in the left-hand side and evaluate what
is left at x = —2, giving

_ 3(=2) _
(-2 -D(x+2)
Thus, as before,

3x 1 N 2
x-Dx+2) x-1 x+2

This method of obtaining partial fractions is called the cover up rule.

Example 2.32  Using the cover up rule, express in partial fractions the rational function

2x +1
(x=2)(x+D(x—=3)

Solution  The corresponding partial fractions are of the form

2x +1 __A B C
=2+ D -3) (x-2) @@+ (x-3)

Using the cover up rule

202) + 1 S

T x-22+n2-3 °

B 2=1) + 1 L

T =1-)x+D(=1-3) 7
203) + 1 ;

T B-23+Dx-3 ¢

so that

2x +1 _ % 1 " %
(x=2)(x +D(x —3) x—2 x+1 x-3

Because it is easy to make an error with this process, it is sensible to check the answers
obtained. This can be done by using a ‘spot’ value to check that the left- and right-hand
sides yield the same value. When doing this avoid using x = 0 or any of the special values
of x that were used in finding the coefficients.

For example, taking x = 1 in the partial fraction expansion of Example 2.32, we have

left-hand side = 20+ 1 =3
1-2)a+DhHa-3)
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right-hand side = -3
1-2 1+1 1-3

giving a positive check.

(b) Repeated linear factors
Each k times repeated linear factor, of the form (x — «), in the denominator g(x) will

give rise to a partial fraction of the form
A

A A
+ +...+
x-a) k-a)? (x — )
where A,, A,, ..., A, are real constants.
Example 2.33  Express as partial fractions the rational function
3x +1
(x =1D>(x +2)
Solution In this case the denominator consists of the distinct linear factor (x + 2) and the twice
repeated linear factor (x — 1). Thus, the corresponding partial fractions are of the form
3x +1 A B C
= + +
(x=1D2(x+2) (-1 (x-1> (x+2)
A -D(x+2)+ Blx +2)+ C(x — 1)?
(x—1D*(x +2)
which gives
3x+1=Ax— Dx+2)+Bx+2)+ Clx—1)?
5
5

Setting x = 1 gives 4 = B(3) and B = %. Setting x = —2 gives =5 = C(—3)*and C = —
To obtain A we can give x any other value, so taking x = 0 gives

1=(-2A+2B+C

and substituting the values of B and C gives A = 3. Hence

S
9

(x+2)

(S

5
9 —

3x+1 B
(x—12(x+2) x-1

T e

(¢) Irreducible quadratic factors
Each distinct irreducible quadratic factor, of the form (ax* + bx + ¢), in the denomina-

tor g(x) will give rise to a partial fraction of the form

Ax + B
ax* + bx + ¢
where A and B are real constants.
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Example 2.34

Solution

Example 2.35

Solution

Express as partial fractions the rational function

Sx
(P +x+Dx-2)

In this case the denominator consists of the distinct linear factor (x — 2) and the distinct
irreducible quadratic factor (x* + x + 1). Thus, the corresponding partial fractions are
of the form

S5x _ Ax+B N C _(Ax+B)(x—2)+C(x2+x+l)
2 +x+Dx-2) xX+x+1 x-2 (X2 +x+D(x-2)

giving
Sx=A@x+B)x—-2)+Cx*+x+1)

Setting x = 2 enables us to calculate C:
10=(2A + B)0) + C(7) and C=1%1

Here, however, we cannot select special values of x that give A and B immediately,
because x* + x + 1 is an irreducible quadratic and cannot be factorized. Instead we
make use of Property (i) of polynomials, described earlier (see Section 2.4.1, which
stated that if two polynomials are equal in value for all values of x then the correspond-
ing coefficients are equal. Applying this to

Sx=Ax+B)x—-2)+Cx*+x+1)

we see that the coefficient of x? on the right-hand side is A + C while that on the left-
hand side is zero. Thus

A+C=0 and A=-C=-2

Similarly the coefficient of x° on the right-hand side is —2B + C and that on the left-
hand side is zero, and we obtain —2B + C = 0, which implies B = 3C = 3. Hence
10 10

— x 19
7 + 7

+x+1 x-2

S5x _
2 +x+Dx-2) «x

N[

Express as partial fractions the rational function

3x2
(x—-Dx+2)
In this example the numerator has the same degree as the denominator.
The first step in such examples is to divide the bottom into the top to obtain a
polynomial and a strictly proper rational function. Thus
3x2 6 — 3x
- = 3 S
(x-Dx+2) (x-Dx+2)
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We then apply the partial fraction process to the remainder, setting

6 —3x A N B
(x—=Dx+2) x—1 x+2

_A(x +2) + B(x — 1)
C x=D(x+2)

giving
6 —3x=Ax+2)+Bx—1)
Setting first x = 1 and then x = —2 gives A = 1 and B = —4 respectively. Thus

3x? 1 4

=3+
x=-Dx+2) x—1 x+2

Summary of method

In general, the method for finding the partial fractions of a given function f(x) = p(x)/g(x) consists of

the following steps.

Step 1: If the degree of p is greater than or equal to the degree of ¢, divide ¢ into p to obtain

£ = () + 22
q(x)

where the degree of s is less than the degree of ¢.

Step 2: Factorize g(x) fully into real linear and irreducible quadratic factors, collecting together all
like factors.
Step 3: Each linear factor ax + b in g(x) will give rise to a fraction of the type

A
ax+b

(Here a and b are known and A is to be found.)
Each repeated linear factor (ax + b)" will give rise to n fractions of the type

Al A2 A3 An
+ + +...
ax+b (ax +b)? (ax + b)’ (ax + b)"

Each irreducible quadratic factor ax* + bx + ¢ in g(x) will give rise to a fraction of the type
Ax + B

ax* + bx + ¢

Each repeated irreducible quadratic factor (ax* + bx + ¢)" will give rise to n fractions of the type

Ax + B, N Ay x + B, N A,x + B,
ax*+bx+c (ax*+bx+c? T (ax*+bx+c)
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Put p(x)/q(x) (or s(x)/q(x), if that case occurs) equal to the sum of all the fractions involved.

Step 4: Multiply both sides of the equation by ¢(x) to obtain an identity involving polynomials, from
which the multiplying constants of the linear combination may be found (because of Property (i)
(see Section 2.4.1)).

Step 5: To find these coefficients, two strategies are used.

e Strategy I: Choose special values of x that make finding the values of the unknown
coefficients easy: for example, choose x equal to the roots of g(x) = 0 in turn and use the

‘cover up’ rule.

e Strategy 2: Compare the coefficients of like powers of x on both sides of the identity. Starting
with the highest and lowest powers usually makes it easier.

Strategy 1 may leave some coefficients undetermined. In that case we complete the process using
Strategy 2.

Step 6: Lastly, check the answer either by choosing a test value for x or by putting the partial
fractions over a common denominator.

2.5.2 Exercises

Where appropriate, check your answers using MATLAB.

39

40

Express the following improper rational functions
as the sum of a polynomial function and a strictly

proper rational function.

@ fx) =@ +x+ D/[(x + Dx — 1)
) f) =@ —x*'—x+ DI+ x+1)
Express as a single fraction

2 x—1
+
x—2 x*+1

1
@ ~ -

1 1

X =3x24+3x -1 P —xr-x+1

(b)

x+1 1 1 2
+ - +
X241 x-1 (x-1D* «x-2

(©

41

42

Express as partial fractions

(a)

©

(e)

x+D(*+2x+2)

1 " 2x —1
x+Dx=2) () (x+D(x-2)
X =2 d x—1
x+Dx-2) @ (x + D(x = 2)?
1 1

()

(x +1D(x? - 4)

Express as partial fractions

()

(©)

(e)

x2-5x+4

3x -1

X3 =3x-2

x2+x-1

(x2 +1)?

1
x* -1

(b)

xr -1

x2=5x+6

(d)

18x% — 5x + 47
2+ 4)(x - D(x +5)

()
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2.5.3

Figure 2.39
Horizontal and
vertical asymptotes.

Asymptotes

Sketching the graphs of rational functions gives rise to the concept of an asymptote. To
illustrate, let us consider the graph of the function

y=f)=—— (x>0)
1+ x

and that of its inverse

y= W= 0=a<)

Expressing x/(x + 1) as (x + 1 — D/(x + 1) = 1 — 1/(x + 1), we see that as x gets
larger and larger 1/(x + 1) gets smaller and smaller, so that x/(x + 1) approaches
closer and closer to the value 1. This is illustrated in the graph of y = f(x) shown in
Figure 2.39(a). The line y = 1 is called a horizontal asymptote to the curve, and we
note that the graph of f(x) approaches this asymptote as | x| becomes large.

y
|
X px=1
J I—x |!
\ |
|
|
|
ya Horizontal |
asymptote |
|
|
L et <_ — y=1 : Vertical
X |~ asymptote

) x+1 :

: L -

Ol1 X O 1 X

@ (b)

The graph of the inverse function y = f~'(x) is shown in Figure 2.39(b), and the line
x = 1 is called a vertical asymptote to the curve.

The existence of asymptotes is a common feature of the graphs of rational functions.
They feature in various engineering applications, such as in the plotting of root
locus plots in control engineering. In more advanced applications of mathematics to
engineering the concept of an asymptote is widely used for the purposes of making
approximations. Asymptotes need not necessarily be horizontal or vertical lines; they
may be sloping lines or indeed nonlinear graphs, as we shall see in Example 2.37.
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Example 2.36

Solution

Figure 2.40

1
Graphof y = ——.
3—-x

Example 2.37

Solution

Sketch the graph of the function

1
=— #3
y=3 (x#3)

and find the values of x for which

1
3—x

<2

We can see from the formula for y that the line x = 3 is a vertical asymptote of the func-
tion. As x gets closer and closer to the value x = 3 from the left-hand side (that is, x < 3),
y gets larger and larger and is positive. As x gets closer and closer to x = 3 from the
right-hand side (that is, x > 3), y is negative and large. As x gets larger and larger, y gets
smaller and smaller for both x > 0 and x < 0, so y = 0 is a horizontal asymptote. Thus
we obtain the sketch shown in Figure 2.40. By drawing the line y = 2 on the sketch,
we see at once that

1
3—x

<2

for x <3 and x > 3. This result was obtained algebraically in Example 1.24. Generally
we use a mixture of algebraic and graphical methods to solve such problems.

1
N
Ve

Sketch the graph of the function

2 _ 4 _
y=ﬂm=17f73 (x# —1)

We begin the task by locating points at which the function is zero. Now f(x) = 0 implies
that x> — x — 6 = (x — 3)(x + 2) = 0, from which we deduce that x = 3 and x = —2 are
zeros of the function. Thus the graph y = f(x) crosses the x axis at x = —2 and x = 3.
Next we locate the points at which the denominator of the rational function is zero,
which in this case is x = —1. As x approaches such a point, the value of f(x) becomes
infinitely large in magnitude, and the value of the rational function is undefined at such
a point. Thus the graph of y = f(x) has a vertical asymptote at x = — 1. (There is usually
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Figure 2.41

x—06

2_
Graph of y= R

x+1

a vertical asymptote to the graph of the rational function y = p(x)/g(x) at points where
the denominator g(x) = 0.)

Next we consider the behaviour of the function as x gets larger and larger, that is
as x — oo or x — —oo. To do this, we first simplify the rational function by algebraic
division, giving

4

y=fx)=x-2-
x+1

As x — 300, 4/(x + 1) — 0. Thus, for large values of x, both positive and negative,
4/(x + 1) becomes negligible compared with x, so that f(x) tends to behave like x — 2.
Thus the line y = x — 2 is also an asymptote to the graph of y = f(x).

Having located the asymptotes, we then need to find how the graph approaches
them. When x is large and positive the term 4/(x + 1) will be small but positive, so that
f(x) is slightly less than x — 2. Hence the graph approaches the asymptote from below.
When x is large and negative the term 4/(x + 1) is small but negative, so the graph
approaches the asymptote from above. To consider the behaviour of the function near
x = —1, we examine the factorized form

- 2
y = flo = S
x+1

When x is slightly less than —1, f(x) is positive. When x is slightly greater than —1,
f(x) is negative.
We are now in a position to sketch the graph of y = f(x) as shown in Figure 2.41.

Asymptote - 10
x=-1

Asymptote y =x —2

Modern computational aids have made graphing functions much easier, but to obtain
graphs of a reasonably good quality some preliminary analysis is always necessary.
This helps to select the correct range of values for the independent variable and for the
function. For example, asking a computer package to plot the function

_ 13x? —34x +25
X2 =3x+2
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Figure 2.42

25.4

Example 2.38

Solution

Figure 2.43
Table of values for
Example 2.38.

y Y
20 F \ 20 +
15 j 15 j \
—— | — ]
10 | 10 |
5F 5¢
-4 =2 0 2 4 6 x -4 =2 0 2 4 6 x
_5 - _5 -
-10 | —10 |
-5+ /\ st N
(a) (b)

without prior analysis might result in the graph shown in Figure 2.42(a). A little analysis
shows that the function is undefined at x = 1 and 2. Excluding these points from the range
of values for x produces the more acceptable plot shown in Figure 2.42(b), although it is
not clear from either plot that the graph has a horizontal asymptote y = 13. Clearly, much
more preliminary work is needed to obtain a good-quality graph of the function.

Parametric representation

In some practical situations the equation describing a curve in cartesian coordinates
is very complicated and it is easier to specify the points in terms of a parameter.
Sometimes this occurs in a very natural way. For example, in considering the trajectory
of a projectile, we might specify its height and horizontal displacement separately in
terms of the flight time. In the design of a safety guard for a moving part in a machine
we might specify the position of the part in terms of an angle it has turned through. Such
representation of curves is called parametric representation and we will illustrate the
idea with an example. Later, we shall consider the polar form of specifying the equation
of a curve (see Section 2.6.8).

Sketch the graph of the curve given by x = £*, y = £* (t € R).

The simplest approach to this type of curve sketching using pencil and paper is to draw
up a table of values, as in Figure 2.43.

t|{ -4 -3 -2-1012 3 4

x|—64 =27 =8 -1 0 1 8 27 64

yl 16 9 4 1 0 1 4 9 16

Clearly in this example we need to evaluate x and y at intermediate values of ¢ to obtain
a good drawing. A sketch is shown in Figure 2.44.
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Figure 2.44
Graph of the
semi-cubical parabola
x=0,y=r(tER).

Example 2.39

b Horizontal
velocity

L 16
L 14
L 12
L 10
L8
L6
L4

| | | 1 | |
—70 —60 —50—40 —30 —20 —10 10 20 30 40 50 60 70 x

Show that the horizontal and vertical displacements, x, y, of a projectile at time ¢ are
x and y, respectively, where x = ut and y = vt — 1g* where u and v are the initial
horizontal and vertical velocities and g is the acceleration due to gravity. Show that its
trajectory is a parabola, and that it attains a maximum height v¥/2g and range 2uv/g.

b Vertical y 4
velocity P2
%T

V- Lt oG Average

L

0
(a)

t

Time O \ Time O 2uv/g x
(b) (©

Figure 2.45 (a) Velocity—time graph (horizontal). (b) Velocity—time graph (vertical). (c) Path of a projectile.

Solution

The velocity-time graphs in the horizontal and vertical directions are shown in Fig-
ures 2.45(a) and (b). The horizontal displacement after time ¢ is x = ut (velocity X
time), and the vertical displacementisy = (v — TNt (average velocity X time). Thus
the trajectory of the projectile is given (parametrically) by
X = ut, y=vt—%gt2
Since x = ut we may write ¢ = x/u. Substituting this into the expression for y gives
_ox g

u  2u?

which is the equation of a parabola.
Completing the square we obtain

2

. L . . . v uy
from which we can see that the projectile attains its maximum height, EyR atx = —.
8

The range of the projectile is found by setting y = 0 which gives x = % The path
of the projectile is illustrated in Figure 2.45(c). 8
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In MATLAB the command

ezplot(x,y)

plots the parametrically defined planar curve x = x(¢), y = y(¢) over the default
domain 0 < ¢ < 7, whilst the command

ezplot (X, ¥, [tnins traxl)

plots x = x(%), y = y(¢) over the domain 7, <t < f,,,-

Check that the commands

syms X y t

X = t"3; y = t"2;
[-4,4])

ezplot(x,y,

return the plot of Figure 2.44.

2.5.5 Exercises

Check the graphs obtained using MATLAB.

43  Plot the graphs of the functions

2+ b _l(erz]
(a)y_1+x ()y—2 X

e o4 ==
© y= 8¢ @Y= T3

for the domain —3 =< x < 3. Find the points on each
graph at which they intersect with the line y = x.

44 Sketch the graphs of the functions given below,

locating their turning points and asymptotes.

x> —8x+15 x+1
@ y=—— (b) y=
X x—1
2 p—
© y:x +5x—-14
x+5

(Hint: Writing (a) as
y = (Vx — (15/x)) + 215 — 8

shows that there is a turning point at x = V15 )

45

47

Plot the curve whose parametric equations
arex = f(t + 4),y =t + 1. Show thatitis a
parabola.
Sketch the curve given parametrically by
x=t*—1, y=£>—1¢
showing that it describes a closed curve as
t increases from —1 to 1.
Sketch the curve (the Cissoid of Diocles) given by
21 21
X = s =
Pl 0 Pl

Show that the cartesian form of the curve is

Circular functions

The study of circular functions has a long history. The earliest known table of a cir-
cular function dates from 425 BCE and was calculated using complicated geometrical
methods by the Greek astronomer—mathematician Hipparchus. He calculated the lengths
of chords subtended by angles at the centre of a circle from 0° to 60° at intervals of 3°
(see Figure 2.46(a)). His work was developed by succeeding generations of Greek
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Figure 2.46

(a) Hipparchus: chords
as a function of angle,
expressed as parts of a
radius. (b) Aryabhata:
half-chords as a
function of angle,
expressed as parts

of the arc subtended
by the angle with

= 31 416/10 000.

2.6.1

Opp;)silc

Adjacent
Figure 2.47

2160 minutes

37 parts

2020 minutes

(a) (b)

mathematicians culminating in the publication in the second century CE of a book by
Ptolemy. His book Syntaxis, commonly called ‘The Great Collection’, was translated
first into Arabic, where it became Al-majisti, and then into Latin, Almagestus.

Another contribution came from the Hindu mathematician Aryabhata (about 500 CE)
who developed a radial measure related to angle measures and the function we now
call the sine function (see Figure 2.46(b)). His work was first translated from Hindi into
Arabic and then from Arabic into Latin. The various terms we use in studying these
functions reflect this rich history of applied mathematics (360° from the Babylonians
through the Greeks, degrees from the Latin degradus, minutes from pars minuta, sine
from the Latin sinus, a mistranslation of the Hindu—Arabic jiva).

There are two approaches to the definition of the circular or trigonometric func-
tions and this is reflected in their double name. One approach is static in nature and
the other dynamic.

Trigonometric ratios

The static approach began with practical problems of surveying and gave rise to the
mathematical problems of triangles and their measurement that we call trigonometry.
We consider a right-angled triangle ABC, where £ CAB is the right-angle, and define the
sine, cosine and tangent functions in relation to that triangle. Thus in Figure 2.47 we have

. . c opposite
sine 0° = sin@° = — = _Oppostte
a hypotenuse

. b adjacent
cosine 8° = cos0° = — = _adjacemt
a hypotenuse

it
tangent 6° = tan 6° = o= M
b  adjacent

The way in which these functions were defined led to their being called the ‘trigono-
metrical ratios’. The context of the applications implied that the angles were measured in
the sexagesimal system (degees, minutes, seconds): for example, 35°21'41” which today
is written in the decimal form 35.36°. In modern textbooks this is shown explicitly,
writing, for example, sin30°, or cos 35.36°, or tan#°, so that the independent variable
0 is a pure number. For example, by considering the triangles shown in Figure 2.48(a),
we can readily write down the trigonometric ratios for 30°, 45° and 60°, as indicated in
the table of Figure 2.48(b).
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Figure 2.48 L “0° 6°  sin@°  cos@°  tan6°
\2 | 2 L300 12 B2 1B
45° 1A2 12 1
50 30° 60°  3/2 1/2 V3
1 \3

(a) (b)

To extend trigonometry to problems involving triangles that are not necessarily
right-angled, we make use of the sine and cosine rules. Using the notation of Figure 2.49
(note that it is usual to label the side opposite an angle by the corresponding lower-case
letter), we have, for any triangle ABC:

C
%
a .
A The sine rule

¢ B
. a b c
Figure 2.49 - = — = — (2.15)

sinA sinB sinC

The cosine rule
a*=b>+ ¢ — 2bc cos A (2.16)

or
b =a*+ ¢* — 2accos B

or

¢t =a*>+ b* — 2ab cos C

Example 2.40  Consider the surveying problem illustrated in Figure 2.50. The height of the tower is to
be determined using the data measured at two points A and B, which are 20 m apart.
The angles of elevation at A and B are 28°53" and 48°51' respectively.

Figure 2.50 C
Tower of
Example 2.40.
Tower
28°53' 48°51"
A 20 m B D

Solution By elementary geometry
£/ ACB = 48°51" — 28°53’ = 19°58’
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48

49

50

Using the sine rule, we have

CB _ AB
sin(28°53')  sin(19°58")

so that

CB = 20 sin(28°53")/sin(19°58")

The height required CD is given by

CD = CB sin(48°51")

= 20 sin(28°53') X sin(48°51")/sin(19°58")

= 21.3027

Hence the height of the tower is 21.3 m.

2.6.2 Exercises

In the triangles shown in Figure 2.51, calculate 51 Calculate the value of 6 where

sin 6°, cos 6° and tan 6°. Use a calculator to 0° = 2 cos30° — |

determine the value of 6 in each case. CosOm = 2 cos

80 mm 52 In triangle ABC, angle A is 40°, angle B is 60°
0° and side BC is 20 mm. Calculate the lengths of
the remaining two sides.
60 mm
100
mm 53 In triangle ABC, the angle C is 35° and the sides AC
(a) and BC have lengths 42 mm and 73 mm respectively.
Calculate the length of the third side AB.
[
54  The lower edge of a mural, which is 4 m high, is
>m 2 mab bserver’s eye level, as shown i
0° 13m m above an observer’s eye level, as shown in
Figure 2.53. Show that the optical angle 6° is
(b) given by
2
Figure 2.51 c0s 6° = 12+4d
\[(4 + d*)(36 + d*)]
In the triangle ABC shown i’_‘ Figure 2.52, where d m is the distance of the observer from
calculate the lengths of the sides AB and BC. the mural. See Review exercises Question 23.
C
15m 4m
27°
A B
Figure 2.52 0° 2m
Calculate the value of § where A dm

sin #° = sin 10° cos 20° + cos 10° sin 20°

Figure 2.53 Optical angle of mural of Question 54.
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2.6.3

Figure 2.54

Figure 2.55
(a) Arc of a circle.
(b) Sector of a circle.

Circular functions

The dynamic definition of the functions arises from considering the motion of a point
P around a circle, as shown in Figure 2.54. Many practical mechanisms involve this
mathematical model.

The distance OP is one unit, and the perpendicular distance NP of P from the initial
position OP, of the rotating radius is the sine of the angle 2 P,OP. Note that we are
measuring NP positive when P is above OP, and negative when P is below OP,.
Similarly, the distance ON defines the cosine of £ P OP as being positive when N is to
the right of O and negative when it is to the left of O.

Because we are concerned with circles and rotations in these definitions, it is natural
to use circular measure so that 2P OP, which we denote by x, is measured in radians.
In this case we write simply sin x or cos x, where, as before, x is a pure number. One
radian is the angle that, in the notation of Figure 2.54, is subtended at the centre when
the arclength PP is equal to the radius OP,. Obviously therefore

180° = 7 radians

a result we can use to convert degrees to radians and vice versa. It also follows from
the definition of a radian that

(a) the length of the arc AB shown in Figure 2.55(a), of a circle of radius r, subtending
an angle 6 radians at the centre of the circle, is given by

length of arc = rf (2.17)

(b) the area of the sector OAB of a circle of radius r, subtending an angle 6 radians at
the centre of the circle (shown shaded in Figure 2.55(b)), is given by

1
area of sector = 7r2() (2.18)
- 4 -
',—’ s\B// /« ~\B
’, ’,
'z r l, - QY
1 1
1 1
1 (0] ‘ Arc 1 0 0\
1 1
; \ NN
\\x PN \\s ’,A
_____ - A N ~~-__—’
(a) (b)

To obtain the graph of sin x, we simply need to read off the values of PN as the point
P moves around the circle, thus generating the graph of Figure 2.56. Note that as we
continue around the circle for a second revolution (that is, as x goes from 27 to 47) the
graph produced is a replica of that produced as x goes from 0 to 27, the same being true
for subsequent intervals of 27r. By allowing P to rotate clockwise around the circle, we
see that sin(—x) = —sin x, so that the graph of sin x can be extended to negative values
of x, as shown in Figure 2.57.

Since the graph replicates itself for every interval of 27,

sin(x + 27k) = sinx, k=0, %1, +2, ... (2.19)

and the function sin x is said to be periodic with period 27 .
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Figure 2.56
Generating the
graph of sin x.

Figure 2.57
Graph of y = sin x.

Figure 2.58
Generating the
graph of cos x.

Figure 2.59
Graph of y = cos x.

aeh
’ A}
’ \
’ \
’ \
N \
1 \
1 \
I 1 ‘1\ 1 1L 5
1 35 1
27 >m 3w sm Amx
I 2 Y 2 1
\ U
\) /]
A} U
A} U
A ’
\_,

y=sinx

F1
—27‘/\

WA
/ _o_ | 77\/277 3w\ x

To obtain the graph of y = cos x, we need to read off the value of ON as the point
P moves around the circle. To make the plotting of the graph easier, we first rotate the
circle through 90° anticlockwise and then proceed as for y = sin x to produce the graph of
Figure 2.58. By allowing P to rotate clockwise around the circle, we see that cos(—x) =
cos x, so that the graph can be extended to negative values of x, as shown in Figure 2.59.
Again, the function cos x is periodic with period 27, so that

cos(x + 2mwk) = cosx, k=0,=%1,+£2,... (2.20)

Note also that the graph of y = sin x is that of y = cos x moved 3 7 units to the right,
while that of y = cos x is the graph of y = sin x moved % 77 units to the left. Thus (from
Section 2.2.3),

sin x = cos(x — %Tr) or cosx = sin(x + %'n') (2.21)

y=cosXx |

AW/ IAN
AVAAvERs
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Figure 2.60
Generating the graph
of tanx.

Figure 2.61
Graph of y = tanux.

Angle
Acute given
angle \/
Initial
direction
(a)
sine + all +
cosine —
tangent —

tangent + | cosine +

sine — sine —
cosine — tangent —
(b)

Figure 2.62

tan x | | |
i I Il
I il I
M__ __ 7l I I
P I /] /]
I /] /]
I I 7
x \p U L S0
0 | 1 p | r !
0 ERR 27 72 e
X, T vt T,
_______ _—— 1=, 1=y,
M, [ 1y 1y
(] 7 ]
I ] ]
0] I I
I Il Il
y:tanx
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
t t + +
=2 | -7 o 13 /o 2T X
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |

The definition of tan x is similar, and makes obvious the origin of the name ‘tangent’
for this function. In Figure 2.60 the rotating radius OP is extended until it cuts the tan-
gent P,M to the circle at the initial position P,. The length P,M is the tangent of 2~ P ,OP.
Allowing P to move around the circle, we generate the graph shown in Figure 2.60.
Again, by allowing P to move in a clockwise direction, we have tan(—x) = —tan x, and the
graph can readily be extended to negative values of x, as shown in Figure 2.61. In this
case the graph replicates itself every interval of duration 7, so that

tan(x + 7wk) = tanx, k=0, +1,+2,... (2.22)

and tan x is of period 7.

These definitions of sine, cosine and tangent show how they are associated with the
properties of the circle, and consequently they are called circular functions. Often in
an engineering context, the static and dynamic uses of these functions occur simultan-
eously. Consequently, we often refer to them as trigonometric functions.

Using the results (2.19), (2.20) and (2.22), it is possible to calculate the values of the
trigonometric functions for angles greater than 3 using their values for angles between
zero and 37. The rule is: take the acute angle that the direction makes with the initial
direction, find the sine, cosine or tangent of this angle and multiply by +1 or —1 according
to the scheme of Figure 2.62. For example,
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Example 2.41

Solution

Figure 2.63

Example 2.42

Solution

cos(135°) = cos(180° — 45°) = —cos 45° = —\/%
sin(330°) = sin(360° — 30°) = —sin 30° = —%
tan(240°) = tan(180° + 60°) = tan 60° = \3

As we frequently move between measuring angles in degrees and in radians, it is
important to check that your calculator is in the correct mode.

If the radius OP is rotating with constant angular velocity  (in rad s™') about O
then x = wt, where ¢ is the time (in s). The time 7 taken for one complete revolution is
given by T = 2m; that is, T = 27/w. This is the period of the motion. In one second
the radius makes /27 such revolutions. This is the frequency, v. Its value is given by

1 0}
v = frequency = —— = —
period 2w

Thus, the function y = A sin wt, which is associated with oscillatory motion in engineer-
ing, has period 27/w and amplitude A. The term amplitude is used to indicate the
maximum distance of the graph of y = A sin wf from the horizontal axis.

Sketch using the same set of axes the graphs of the functions
() y=2sint (b) y=sint (c) y==ssint

and discuss.

The graphs of the three functions are shown in Figure 2.63. The functions (a), (b) and
(c) have amplitudes 2, 1 and 5 respectively. We note that the effect of changing the
amplitude is to alter the size of the humps’ in the sine wave. Note that changing only
the amplitude does not alter the points at which the graph crosses the x axis. All three
functions have period 2.

v (a) —-—y=2sint
(b) ——y=sint
(c) ——-y:%sinl

Sketch using the same axes the graphs of the functions
(a) y=sint (b) y = sin 2¢ () y= sin%t

and discuss.

The graphs of the three functions (a), (b) and (c) are shown in Figure 2.64. All three
have amplitude 1 and periods 27, 7 and 47 respectively. We note that the effect of
changing the parameter o in sin wf is to ‘squash’ or ‘stretch’ the basic sine wave sin .
All that happens is that the basic pattern repeats itself less or more frequently; that is,
the period changes.
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Figure 2.64

Example 2.43

Solution

Figure 2.65

(a) y=sint
Y (b) = = =y=sin2t
(c) —-—y=sin%t
1-- —
-~ /\ / —
I . /.
i/ \ SN //‘\ I VN,
) \'\ - \ 7 J \.\ /
. K ¥ \
27y N\, -7 \\/'I o \ 1277 t
N / \
k/‘/ 7 .,/___1 \// \\/

In engineering we frequently encounter the sinusoidal function

y = Asin(of + a), »>0 (2.23)

Following the earlier discussion (see Section 2.2.4), we have that the graph of this func-

tion is obtained by moving the graph of y = A sin wf horizontally:

o . e .
— units to the left if « is positive
0}

or

|

— units to the right if « is negative
w

The sine wave of (2.23) is said to ‘lead’ the sine wave A sin wf when « is positive
and to ‘lag’ it when « is negative.

Sketch the graph of y = 3 sin(2¢ + %77).

First we sketch the graph of y = 3 sin 27, which has amplitude 3 and period 7, as
shown in Figure 2.65(a). In this case a = %77 and w = 2, so it follows that the graph
of y = 3sin(2r + %77) is obtained by moving the graph of y = 3 sin 2¢ horizontally to
the left by %77 units. This is shown in Figure 2.65(b).

A AN AL
£ A TRV AR

(a) y=3sin2t¢

ANANE AN
' VARV

(b) y=3sin(2¢ +§la'r)
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Example 2.44 Consider the crank and connecting rod mechanism illustrated in Figure 2.66. Determine
a functional relationship between the displacement of Q and the angle through which
the crank OP has turned.

Figure 2.66
Crank and connecting
rod mechanism.

Solution  As the crank OP rotates about O, the other end of the connecting rod moves backwards
and forwards along the slide AB. The displacement of Q from its initial position
depends on the angle through which the crank OP has turned. A mathematical model
for the mechanism replaces the crank and connecting rod, which have thickness as well
as length, by straight lines, which have length only, and we consider the motion of the
point Q as the line OP rotates about O, with PQ fixed in length and Q constrained to
move on the line AB, as shown in Figure 2.67. We can specify the dependence of Q
on the angle of rotation of OP by using some elementary trigonometry. Labelling the
length of OP as r units, the length of PQ as / units, the length of OQ as y units and the
angle £ AOP as x radians, and applying the cosine formula gives

Figure 2.67
Model of crank and
connecting rod.

I*=r*+ y* — 2yrcos x

which implies
(y —rcosx)* =1 —r*+ r*cos’x
= [* — r*sin’x
and

y = rcosx + (1> — r*sin’x)

Thus for any angle x we can calculate the corresponding value of y. We can represent
Figure 2.68 this relationship by means of a graph, as shown in Figure 2.68.
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2.6.4

In MATLAB the circular functions are represented by sin (x), cos (x) and tan (x)
respectively. (Note that MATLAB uses radians in function evaluation.) Also in
MATLAB pi (Pi in MAPLE) is a predefined variable representing the quantity 7.
As an example check that the commands

t = —2*pi : pi/90 : 2*pi;
vyl = sin(t); y2 = sin(2*t); y3 = sin(0.5%t);
plOt(tI er '_’I t, Y2r ’__'I t, Y3, =0 ')

output the basic plots of Figure 2.64.
In symbolic form graphs may be produced using the ezplot command. Check
that the commands

syms t

y = sym(3*sin(2*t + pi/3));
ezplot(y, [-2*pi,2*pi] )
grid

produce the plot of Figure 2.65(b).

Trigonometric identities

Other circular functions are defined in terms of the three basic functions sine, cosine
and tangent. In particular, we have

1 .
secx = , the secant function
CoS X
1 .
cosecx = ——, the cosecant function
sin x
1 .
cotx = , the cotangent function
tan x

In MATLAB these are determined by sec (x), csc(x) and cot (x) respectively.

From the basic definitions it is possible to deduce the following trigonometric identities
relating the functions.

Triangle identities

cos’x + sin’x = 1 (2.24a)
1 + tan’x = sec’x (2.24b)
1 + cot’x = cosec’x (2.24¢)

The first of these follows immediately from the use of Pythagoras’ theorem in a
right-angled triangle with a unit hypotenuse. Dividing (2.24a) through by cos®x yields
identity (2.24b), and dividing through by sin®r yields identity (2.24c).



2.6 CIRCULAR FUNCTIONS 137

Compound-angle identities

sin(x + y) = sin x cos y + cos x sin y (2.25a)

sin(x — y) = sin x cOS y — €OS x sin y (2.25b)

cos(x + y) = cosxcosy — sinxsiny (2.25¢)

cos(x —y) = cos xcosy + sinxsiny (2.25d)
tan x + tan

fan(x + y) = —ot ALY (2.25¢)

1—tanx tany

tanx —tany

tan(x — y) = ——— 2.25f
( Y 1+ tan x tany ( )

Sum and product identities
sin x + siny = 2 sin %(x + y)cos %(x —y) (2.26a)
sinx — siny = 2 sin %(x — y)cos %(x + ) (2.26b)
cosx + cosy = 2 cos %(x + y)cos %(x —y) (2.26¢)
cosx — cosy = —2sin 3(x + y)sin F(x — y) (2.26d)

From identities (2.25a), (2.25¢) and (2.25¢) we can obtain the double-angle formulae.

sin 2x = 2 sin x COS X (2.27a)
cos 2x = cos’x — sin’x (2.27b)
= 2cos’x — 1 (2.27¢)
=1 — 2sin’x (2.27d)
2 tan x
tan2x = .o (2.276)
1 — tan-x

(Writing x = 6/2 we can obtain similar identities called half-angle formulae.)

Example 2.45  Express cos(7/2 + 2x) in terms of sin x and cos x.

Solution  Using identity (2.25¢) we obtain
cos(m/2 + 2x) = cosar/2 cos 2x — sin 7r/2 sin 2x
Since cos/2 = 0 and sin w/2 = 1, we can simplify to obtain
cos(7/2 + 2x) = —sin 2x
Now using the double-angle formula (2.27a), we obtain

cos(m/2 + 2x) = —25sin x cos x
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Example 2.46

Solution

AL AWAG AR,

Show that

sin(A + B) + sin(A — B) = 2sin A cos B
and deduce that

sinx + siny = 2sin%(x + y)cos%(x -y

Hence sketch the graph of y = sin 4x + sin 2x.

Using identities (2.25a) and (2.25b) we have
sin(A + B) = sinA cos B + cos A sin B
sinfA — B) = sin A cos B — cos A sin B
Adding these two identities gives
sin(A + B) + sin(A — B) = 2sin A cos B
Now settingA + B=xand A — B =y, we see that A = %(x +y)and B = %(x — y) so that
sinx + siny = 2 sin%(x + y)cos%(x -y

which is identity (2.26a). (The identities (2.26b—d) can be proved in the same manner.)
Applying the formula to

y = sin 4x + sin 2x
we obtain
y = 2 sin 3x cos x

The graphs of y = sin3x and y = cos x are shown in Figures 2.69(a) and (b). The
combination of these two graphs yields Figure 2.69(c). This type of combination of
oscillations in practical situations leads to the phenomena of ‘beats’.

VUVVVV . |

YA y
3+ 3F
2 F 2 F
1 1
o\ N\ 37 fA
L X -1t T 27\ 37w 4 x
-2} -2
3L 3L

Figure 2.69 (a) y = sin 3x; (b) y = cos x; (¢) y = 2 sin 3x cos x.

The identities (2.26a—d) are useful for turning the sum or difference of sines and cosines
into a product of sines and/or cosines in many problems. But the reverse process is
also useful in others! So we summarize here the expressing of products as sums or
differences.
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Example 2.47

Solution

Example 2.48

sin x cos y = 3[sin(x + y) + sin(x — y)] (2.28a)
cos x siny = %[sin(x + y) — sin(x — y)] (2.28b)
COS X COSy = %[cos(x + y) + cos(x — y)] (2.28¢)
sin x sin y = — F[cos(x + y) — cos(x — y)] (2.28d)

Note the minus sign before the bracket in (2.28d). Before the invention of calculat-
ing machines, these identities were used to perform multiplications. Commonly the
mathematical tables used only tabulated the functions up to 45° to save space so that all
four identities were used.

Solve the equation 2 cos*x + 3 sinx = 3 for 0 < x < 277.

First we express the equation in terms of sin x only. This can be done by eliminating
cos’x using the identity (2.24a), giving

2(1 — sin’*) + 3sinx =3

which reduces to
2sin’x — 3sinx+ 1 =0

This is now a quadratic equation in sin x, and it is convenient to write A = sin x, giving
22 =31 +1=0

Factorizing then gives CAr—DHA -1 =0

leading to the two solutions A = 3+ and A=1

We now return to the fact that A = sin x to determine the corresponding values of x.

1 If A= 5 then sinx = 3. Remembering that sin x is positive for x lying in the first
and second quadrants and that singm = 1, we have two solutions corresponding to
A= %, namely x = %77 and x = %77'.

(i) If A = 1 then sin x = 1, giving the single solution A = %77.
Thus there are three solutions to the given equation, namely

1 1 5
x=%m, 77 and G

The path of a projectile fired with speed V at an angle « to the horizontal is given by
1 gx?
=xtang — ——>——
Y 2 VZcos’a

(See Example 2.39 with u = Vcosa, v = Vsina.)
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Solution

Figure 2.70
Trajectories

for

different launch

angles.

2.6.5

For fixed V a family of trajectories, for various angles of projection «, is obtained, as
shown in Figure 2.70. Find the condition for a point P with coordinates (X, Y) to lie
beyond the reach of the projectile.

Given the coordinates (X, Y), the possible angles a of launch are given by the roots of
the equation

2
Y =Xtano — lL
2 V2 cos’a

Using the trigonometric identity

1 + tan’o =

cos’a

gives
1 gX?
Y = Xtanor — — 52 (1 + tan2ex)
2 v
Writing T = tan «, this may be rewritten as
(eXHT? — RXVHT + (gX* +2V*Y) =0

which is a quadratic equation in 7. From (1.8), this equation will have two different
real roots if

(2XV?? > 4(gXH(gX* + 2V?Y)
but no real roots if
(2XVH? < 4(gX?)(gX* + 2V?Y)
Thus the point P(X, Y) is ‘safe’ if
V< g’X? + 2gVY
The critical case where the point (X, Y) lies on the curve
V4= g2 + 2gV%y
gives us the so-called ‘parabola of safety’, with the safety region being that above this
parabola

_VEoex?

Y0 T o

Amplitude and phase

Often in engineering contexts we are concerned with vibrations of parts of a struc-
ture or machine. These vibrations are a response to a periodic external force and will
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Example 2.49

Solution
YA
4
0 o
A -3
Figure 2.71
The angle a.

usually have the same frequency as that force. Usually, also, the response will lag behind
the exciting force. Mathematically this is often represented by an external force of the
form F sin wt with a response of the form a sin wt + b cos wt, where a and b are con-
stants dependent on F, w and the physical characteristics of the system. To find the size
of the response we need to write it in the form A sin(w? + «), where

A sin(wt + @) = asinwt + bcos wt

This we can always do, as is illustrated in Example 2.49.

Express y = 4 sin3t — 3 cos 3¢ in the form y = Asin(3f + «).

To determine the appropriate values of A and «, we proceed as follows.
Using the identity (2.25a), we have

Asin(3t + «) = A(sin 3t cosa + cos 3¢ sina)
= (Acosa)sin 3t + (A sina)cos 3¢
Since this must equal the expression
4sin3t — 3 cos 3¢

for all values of #, the respective coefficients of sin 3¢ and cos 3¢ must be the same in
both expressions, so that

4 =Acosa (2.29)
and

—3 = Asina (2.30)
The angle « is shown in Figure 2.71. By Pythagoras’ theorem,

A=V16 + 9) =5
and clearly

tana = —%
The value of & may now be determined using a calculator. However, care must be taken
to ensure that the correct quadrant is chosen for «. Since A is taken to be positive, it
follows from Figure 2.71 that « lies in the fourth quadrant. Thus, using a calculator, we

have « = —0.64 rad and

y = 4 sin 3t — 3 cos 3t = 5 sin(3¢r — 0.64)
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Using the Symbolic Math Toolbox in MATLAB, commands such as expand and
simplify may be used to manipulate trigonometric functions, and the command
solve may be used to solve trigonometric equations (these commands have been
introduced earlier). Some illustrations are:

(a)

(b)

()

(d)

The commands

syms X y
expand(cos(x + y))

return
cos (x)cos(y) - sin(x)sin(y)
The commands

syms x
simplify(cos(x)"2 + sin(x)"2)

return
1
The commands

syms x
simplify(cos(x)~2 - sin(x)"2)

return
coSs (2*x)
The commands

syms x
solve (2*cos(x) "2 + 3*sin(x)

Il
Il
)

return
s = 1/2%pi
1/6*pi
5/6*pi
confirming the answer obtained in Example 2.47.
If numeric answers are required then use the command

double (s)
to obtain
s = 1.5708
0.5236

2.6180
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2.6.6 Exercises

Check your answers using MATLAB whenever possible.

55  Copy and complete the table in Figure 2.72.

degrees| 0 | 30 60 150

radians /4 /2 |2m/3 T

degrees | 210 | 225 | 240 | 270 | 300 | 315 | 330

radians 2@

Figure 2.72 Conversion table: degrees to radians.

56  Sketch for —37 < x < 37 the graphs of
(@ y=sin2x (b) y=sin+x

(c) y = sin’x (d) y =sinx?

©y=—" (Enma=0+l,42,..)

sin x
(f) y =sin (lj x#0)
X

57  Solve the following equations for 0 < x < 27:
(a) 3sin’x + 2sinx —1 =0
(b) 4cos’x +5cosx+1=0
(c) 2tan’x —tanx — 1 =0

(d) sin2x = cos x

58 By referring to an equilateral triangle, show that
cos 37 = 33 and tan +7 = $+/3, and find values
for sin%ﬂ', tan%frr, cos %77 and sin %77'. Hence,
using the double-angle formulae, find sin %Tl’,
cos 11—277 and tan 11—277'. Using appropriate properties
(see Section 2.6), calculate

(a) sin%ﬂ' (b) tan%ﬂ' (©) cos%ﬂ'

(d) sin%ﬂ' (e) COS%’]T ) tan%ﬂ'

59 Given s = sin6, where %77 <60 <, find, in

terms of s,
(a) cosf (b) sin 26
(c) sin30  (d) sin36

60

6l

62

63

64

65

66

Show that

1 + sin26 + cos 26
- =cot0
1+ sin26 — cos 260

Given ¢t = tan %x, prove that

. 2t
a) sinx =
) 1+
1-1¢2
b) cosx =
®) 1+
(c) tanx =

2

Hence solve the equation
2sinx —cosx =1
In each of the following, the value of one of the

six circular functions is given. Without using a
calculator, find the values of the remaining five.

(b) cosx = —%\/3
(d) secx =\2
(f) cotx =13

. 1
(a) sinx =5
(c) tanx = —1

(e) cosecx = —2

Express as a product of sines and/or cosines

(a) sin 36 + sin6 (b) cosf — cos 260

(c) cos 56 + cos 260 (d) sinf — sin 20

Express as a sum or difference of sines or cosines

(a) sin 30 sin6 (b) sin 30 cos6

(c) cos 30 sin6 (d) cos 36 cos6

Express in the forms r cos(d — «) and
rsin(6 — B)

(@) V3sin@ — cosf (b) sin@ — cos6

(c) sinf + cosf (d) 2 cosf + 3sinf

Show that —% < 2cosx + cos 2x < 3 for all x,

and determine those values of x for which the
equality holds. Plot the graph of y = 2 cos x + cos 2x
for 0 < x < 27r.
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2.6.7

Figure 2.73
Graph of sin”'x.

Inverse circular (trigonometric) functions

Considering the inverse of the trigonometric functions, it follows from the definition
given in (2.4) that the inverse sine function sin™'x (also sometimes denoted by arcsin x)
is such that

if y=sin"'x then x=siny

Here x should not be interpreted as an angle — rather sin~'x represents the angle whose
sine is x. Applying the procedures for obtaining the graph of the inverse function
given previously (see Section 2.2.3 to the graph of y = sin x (Figure 2.55) leads to the
graph shown in Figure 2.73(a). As we explained in Example 2.8, when considering the
inverse of y = x?, the graph of Figure 2.73(a) is not representative of a function, since
for each value of x in the domain —1 < x < 1 there are an infinite number of image
values (as indicated by the points of intersection of the dashed vertical line with the
graph). To overcome this problem, we restrict the range of the inverse function sin™'x to
—37 < sin”'x < $7 and define the inverse sine function by

if y = sin"'x thenx = siny, where —37<y<mand -1 sx<1 2.31)

The corresponding graph is shown in Figure 2.73(b).

Similarly, in order to define the inverse cosine and inverse tangent functions cos™'x
and tan”'x (also sometimes denoted by arccos x and arctan x), we have to restrict the
ranges. This is done according to the following definitions:

ify=cos 'xthenx =cosy, where0<sy<mand —1sx<1 (2.32)

if y = tan 'x then x = tany, where —47 <y < 37 and x is any
real number (2.33)

Y /( y=sin"x
21T |

(@) (b)
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1
277 \
1 1 1 1 1 1 1 >

Figure 2.74 Graph of cos™ 'x.

Example 2.50

Solution

1 X

Figure 2.75 Graph of tan™'x.

The corresponding graphs of y = cos 'x and y = tan 'x are shown in Figures 2.74
and 2.75, respectively.

In some books (2.31)—(2.33) are called the principal values of the inverse functions.
A calculator will automatically give these values.

Evaluate sin~'x, cos™'x, tan”'x where (a) x = 0.35 and (b) x = —0.7, expressing the
answers correct to 4dp.

(a) sin~'(0.35) is the angle o which lies between —m/2 and +7/2 and is such that
sina = 0.35. Using a calculator we have

sin™'(0.35) = 0.3576 (4dp) = 0.11387

which clearly lies between —7/2 and +7/2.
cos~'(0.35) is the angle B which lies between 0 and 7 and is such that cos 8 = 0.35.
Using a calculator we obtain

cos '(0.35) = 1.2132 (4dp) = 0.38627

which lies between 0 and 7.
tan~'(0.35) is the angle y which lies between —m/2 and +7/2 and is such that
tany = 0.35. Using a calculator we have

tan"'(0.35) = 0.3367 (4dp) = 0.10727

which lies in the correct range of values.
Notice that

sin~'(0.35)

—— " # tan"1(0.35)
cos1(0.35)

(b) sin”'(—0.7) is the angle a which lies between —n/2 and +7/2 and is such that
sina = —0.7. Again using a calculator we obtain

sin™!(—0.7) = —0.7754 (4dp)

which lies in the correct range of values.
cos '(—0.7) is the angle 8 which lies between 0 and 7 and is such that cos3 = —0.7.
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Thus B = 2.3462, which lies in the second quadrant as expected.
tan”'(—0.7) is the angle y which lies between —7/2 and +7/2 and is such that
tan y = —0.7. Thus y = —0.6107, lying in the fourth quadrant, as expected.

Example 2.51  Sketch the graph of the function y = sin™'(sin x).

Solution Before beginning to sketch the graph we need to examine the algebraic properties of
the function. Because of the way sin”! is defined we know that for —7/2 < x < 7/2,
sin '(sin x) = x. (The function sin"'x strictly is the inverse function of sin x with the
restricted domain —7/2 < x < 7/2.) We also know that sin x is an odd function, so that
sin(—x) = —sin x. This implies that sin"'x is an odd function. In fact, this is obvious
from its graph (Figure 2.73(b)). Thus, sin”'(sin x) is an odd function. Lastly, since sin x
is a periodic function with period 27z we conclude that sin™'(sin x) is also a periodic
function of period 27. Thus, if we can sketch the graph between 0 and 77, we can obtain
the graph between —7z and 0 by antisymmetry about x = 0 and the whole graph by
periodicity elsewhere. Using Figures 2.73(a) and 2.73(b) we can obtain the graph of
the function for 0 < x < 7, as shown in Figure 2.76 (blue). The graph between —7m
and O is obtained by antisymmetry about the origin, as shown with the dashed line in
Figure 2.76, and the whole graph is obtained making use of the piece between —m and
+m and periodicity.

Figure 2.76 .

Graph of
y = sin"(sin x).

2.6.8 Polar coordinates

In some applications the position of a point P in a plane is represented by its distance
r from a fixed point O and the angle 6 that the line joining P to O makes with some
fixed direction. The pair (r, #) determine the point uniquely and are called the polar
coordinates of P. If polar coordinates are chosen, sharing the same origin O as rec-
tangular cartesian coordinates and with the angle # measured from the direction of

p the Ox axis, then, as can be seen from Figure 2.77, the polar coordinates (r, ) and the
r T cartesian coordinates (x, y) of a point are related by
y
0 1 x=rcosf, y=rsinf (2.34)

Of]~—»x— x

Figure 2.77 and also
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Example 2.52

Solution

r=\x>+y%, tanf=

= <

Note that the origin does not have a well-defined 6. Some care must be taken when evalu-
ating 6 using the above formula to ensure that it is located in the correct quadrant. The
angle tan”'(y/x) obtained from tables or a calculator will usually lie between j:%ﬂ and
will give the correct value of 0 if P lies in the first or fourth quadrant. If P lies in the
second or third quadrant then = tan"'(y/x) + 7. It is sensible to use the values of sin 6
and cos 6 to check that 6 lies in the correct quadrant.

Note that the angle 6 is positive when measured in an anticlockwise direction and
negative when measured in a clockwise direction. Many calculators have rectangular
(cartesian) to polar conversion and vice versa.

(a) Find the polar coordinates of the points whose cartesian coordinates are (1, 2),
(=1,3), (=1, =1), (1, =2), (1, 0, (0, 2), (0, =2).

(b) Find the cartesian coordinates of the points whose polar coordinates are (3, 7/4),
2, —m/6), 2, —xr/2), (5, 37/4).

(a) Using the formula (2.34) we see that
(x=1,y=2)=(r=15,60 = tan"'(2/1) = 1.107)
(x=—1,y=3)=(r =10, 6 = 1.893)
x=—1,y=—1)=(r=1\2,0 = 57/4)
x=1,y=-2)=(r=\560=—1.107)
x=Ly=0=@r=1,0=0)
x=0,y=2)=(r=2,0=mr/2)
x=0,y=-2)=@r=2,0=—n/2)

(Here answers, where appropriate, are given to 3dp.)

(b) Using the formula (2.34) we see that
(r=3,0=n/4) = (x =3N2,y = 3/2)
(r=20=-m6)=x=\3,y=—1)
(r=20=-n2)=x=0,y=-2)
(r=5,0=3m/4)=(x=—5N2,y =52)

To plot a curve specified using polar coordinates we first look for any features, for
example symmetry, which would reduce the amount of calculation, and then we draw
up a table of values of r against values of 6. This is a tedious process and we usually
use a graphics calculator or a computer package to perform the task. There are, how-
ever, different conventions in use about polar plotting. Some packages are designed to
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Figure 2.78

(a) r = 2a cos0,
0<6<mr=0
(b) r = 2a cos#,
0<6=m,

r unrestricted.

Example 2.53

Solution

Example 2.54

Solution

Figure 2.79
Table of values for
r=1+ cos6.

x v x
)

(a) (b

plot only points where r is positive, so that plotting r = 2a cos 0 for 0 < 6 < 7 would
yield Figure 2.78(a) while other packages plot negative values of r, treating r as a
number line, so that » = 2a cos 6 for 0 < 6 < 7 yields Figure 2.78(b).

Express the equation of the circle
x—al+y'=ad’

in polar form.

Expanding the squared term, the equation of the given circle becomes
x4+ y'—2ax=0

Using the relationships (2.34), we have
r*(cos’0 + sin’0) — 2ar cosf = 0

Using the trigonometric identity (2.24a),
r(r — 2acosf) =0, —-n2<0=<mn/2

Since r = 0 gives the point (0, 0), we can ignore this, and the equation of the circle
becomes

r=2acosf, —m2<0=<=nmn/2
Sketch the curve whose polar equation is r = 1 + cos 6.

The simplest approach when sketching a curve given in polar coordinate form is to draw
up a table of values as in Figure 2.79.

0‘0 15 30 45 60 75 90 105 120 135 150 165 180

r12 197 187 171 150 126 1 0.74 050 029 0.13 0.03 0

Because it is difficult to measure angles accurately it is easier to convert these values into
the cartesian coordinate values using (2.34) when polar coordinate graph paper is not
available. The sketch of the curve, a cardioid, is shown in Figure 2.80. Here we have made
use of the symmetry of the curve about the line = 0, that is the line y = 0.



2.6 CIRCULAR FUNCTIONS 149

Figure 2.80 Ay
The cardioid
r=1+ cos6.

In MATLAB the inverse circular functions sin™!(x), cos ~!(x) and tan'(x) are denoted
by asin(x), acos (x) and atan (x) respectively. Using the graphical commands
given earlier (see Section 2.2.1), check the graphs of Figures 2.71-2.74.

Symbolically a plot of the polar curve r = f(f) is obtained using the com-
mand ezpolar(f), over the default domain 0 < 6 < 27, whilst the command
ezpolar(f, [a,b]) plots the curve over the domain a < 6 < b. Check that the

commands

syms theta
r = 1 4+ cos(theta);

ezpolar (r)

plot the graph of the cardioid in Example 2.54.

2.6.9 Exercises

67 Evaluate

(a) sin"'(0.5) (b) sin"!(—0.5)
(c) cos™'(0.5)  (d) cos '(—0.5)
(e) tan"'(V3)  (f) tan '(—\3)

68  Sketch the graph of the functions
(a) y = sin"'(cos x)

(b) y = cos™'(sin x)

(c) y = cos '(cos x)

(d) y = cos™'(cos x) — sin”'(sin x)
69 Iftan 'x = a and tan"'y = B, show that

Xty

tan(or + ) = f—

Deduce that

+
tan”'x+ tan”'y = tanl[uj + km
1—-xy
where k = —1, 0, 1 depending on the values of x

and y.

Sketch the curve with polar form

r=1+2cosf

Sketch the curve whose polar form is
r=1/(1 + 2 cosf)
Show that its cartesian form is

3 —4x—y'+1=0
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Exponential, logarithmic and hyperbolic functions

2.7.1

Figure 2.81
Graphs of exponential
functions.

Figure 2.82
Scaled graphs of
exponential functions.

The members of this family of functions are closely interconnected. They occur in
widely varied applications, from heat transfer analysis to bridge design, from transmis-
sion line modelling to the production of chemicals. Historically the exponential and
logarithmic functions arose in very different contexts, the former in the calculation of
compound interest and the latter in computational mathematics, but, as often happens in
mathematics, the discoveries in specialized areas of applicable mathematics have found
applications widely elsewhere. This is particularly true in engineering where exponen-
tial functions and their applications abound.

Exponential functions

Functions of the type f(x) = a* where a is a positive constant (and x is the independent
variable as usual) are called exponential functions.

The graphs of the exponential functions, shown in Figure 2.81, are similar. By a
simple scaling of the x axis, we can obtain the same graphs fory = 2,y = 3*and y = 4,
as shown in Figure 2.82. The reason for this is that we can write 3* = 2 where k ~ 1.585
and 4° = 2%. Thus all exponential functions can be expressed in terms of one expo-
nential function. The standard exponential function that is used is y = e*, where e is a
special number approximately equal to

2.718281828459045 2...

y v y
4+ 4 F 4 F
y=2 y=3" y=4
3t 3t 3t
2 2 2
| | |
1 ' 1 ' 1 '
| | |
_/ | > _/ | > _/ |
ol 1 x ol 063 x ol 05 x
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Figure 2.83
The standard
exponential
function y = e".

Example 2.55

Solution

Tangent
line at
x=0
|
_/ 1 unit |
L | !
-2 —1 O 1 2 X

This number e is chosen because the graph of y = e* (Figure 2.83) has the property that
the slope of the tangent at any point on the curve is equal to the value of the function at
that point. We shall discuss this property again later (see Section 8.3.12).

We note that the following properties are satisfied by the exponential function:

ehle = ehtn (2.35a)
e*t = e'e’ = Ae*, where A = ¢° (2.35b)
(! -

o= (2.35¢)
e 2

e = (e =a*, wherea = ¢ (2.35d)

Often e” is written as exp x for clarity when ‘x’ is a complicated expression. For example,

eHI) = exp x+1
xX+2

A tank is initially filled with 1000 litres of brine containing 0.25kg of salt/litre.
Fresh brine containing 0.5kg of salt/litre flows in at a rate of 3 litres per second and
a uniform mixture flows out at the same rate. The quantity Q(f)kg of salt in the tank
t seconds later is given by

Q(t) — A + Be*3t/1000

Find the values of A and B and sketch a graph of Q(#). Use the graph to estimate the
time taken for Q(7) to achieve the value 375.

Initially there is 1000 X 0.25kg of salt in the tank, so Q(0) = 250. Ultimately the brine

in the tank will contain 0.5kg of salt/litre, so the terminal value of Q will be 500. The

terminal value of A + Be *'%Cis A, so we deduce A = 500. From initial data we have

250 = 500 + Be’
and since ¢’ = 1, B = —250 and

(1) = 500 — 250e /1%
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Figure 2.84 o) |

The timeline of Q(7).
500 f--=---==mmmmm e mmm oo Terminal value
375
250

Initial value

100 200 300 400 500

The graph of Q(¢) is shown in Figure 2.84. From the graph, an estimate for the time
taken for Q(f) to achieve the value 375 is 234 seconds. From the formula this gives
0(234) = 376.1. Investigating values near ¢ = 234 using a calculator gives the more
accurate time of 231 seconds.

Example 2.56 The temperature 7' of a body cooling in an environment, whose unknown ambient
temperature is «, is given by

T = a+ (T, — a)e™

where T}, is the initial temperature of the body and & is a physical constant. To determine
the value of «, the temperature of the body is recorded at two times, t, and #,, where ¢,
= 2t,and T(t,) = T,, T(t,) = T,. Show that

T, — T3
T, - 2T, + T,

Solution  From the formula for 7(¢) we have
T, —a=(T,— ae
and
T,—a= (T, — ae
Squaring the first of these two equations and then dividing by the second gives

(T — ) _ (T —a)’e
T2 a4 (TO - (X)C_Zkt'

This simplifies to
(T, — @) = (T, — a)(T, — @)
Multiplying out both sides, we obtain
T? —2aT, + o* = T,T, — (T, + T))a + o?
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which gives
(T, — 2T, + T)a = T,T, — T3

Hence the result.

2.7.2 Logarithmic functions
From the graph of y = e, given in Figure 2.83, it is clear that it is a one-to-one func-
tion, so that its inverse function is defined. This inverse is called the natural logarithm

function and is written as

y=Inx
(In some textbooks it is written as log.x, while in many pure mathematics books it
is written simply as log x.) Using the procedures given earlier (see Section 2.2.3), its

graph can be drawn as in Figure 2.85. From the definition we have
(2.36)

ify=e" then x=Iny

which implies that

Ine*=x e"V=y

In the same way as there are many exponential functions (2%, 3%, 4%,...), there are also

many logarithmic functions. In general,
(2.37)

y=a" gives x = log,y

which can be expressed verbally as ‘x equals log to base a of y’. (Note that log,,x
is often written, except in advanced mathematics books, simply as log x.) Recalling
that ¢* = e* for some constant k, we see now that a* = (e“)*, so that ¢ = ¢* and

k= 1Ina.
From the definition of log,x it follows that

Figure 2.85
Graph of y = In x. !
1
1 ’
1 ’
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Example 2.57

Solution

1Oga(xl'x2) = logaxl + logax2
loga(ﬁ) = log,x, — log,x,
X2

log,x" = nlog,x

log,x

xX=a
yx = axlogay
log,x

log,x =
log,a

(a) Evaluate log,32.

(b) Simplify +log,8 — log,3.
10

(c) Expand ln(\/(—zx))
y

(d) Use the change of base formula (2.36f) to evaluate

log;o2

(e) Evaluate loﬂ .
loggx

(a) Since 32 = 2°, log,32 = log,2’ = 5log,2 = 5, since log,2 = 1.

(b) +log,8 — log,2 = log,8" — log,2
= log,2 — [log,2 — log,7] = log,7

© In (@) = In(V(10x)) — In(y?) = L In(10x) — 21Iny

=21In(10) + +Inx—21Iny
(d) log,,32 = log,32 log,,2, hence

log,(32 B
10g7 = log,32 = log,2° = 5log,2 =5

(e) logyx = logyx log,3, so that
logsx  logsx 1

loggx B log;xlogy3 - logy3
But 3 = 9'” 5o that logy3 = log,9"* = $10g,9 = 4, hence

log;x
loggx

=2

log;y32

(2.38a)

(2.38b)

(2.38¢)
(2.38d)
(2.38e)

(2.38f)
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72

73

74

75

76

Despite the fact that these functions occur widely in engineering analysis, they first
occurred in computational mathematics. Property (2.38a) transforms the problem of
multiplying two numbers to that of adding their logarithms. The widespread use of
scientific calculators has now made the computational application of logarithms largely
irrelevant. They are, however, still used in the analysis of experimental data.

In MATLAB the exponential and logarithmic functions are represented by

exponential: exp (x)
natural logarithm In: Iog(x)
logarithm to base 10: 10910 (x)

The command Iog2 (x) is also used for logarithms to the base two.

2.7.3 Exercises

Check your answers using MATLAB whenever possible.

Simplify (c) 1.5In9 —2In6
(a) (&®)°+¢e* e’ + (e%)? (b) e™/e* (d) 21n(2/3) — In(8/9)
© @ @ exp3) (@) Ve

1- 'X:l} (b) e21n)(
+ X

77  Simplify (a) exp {% In L

X

Sketch the graphs of y = ¢ and y = ¢™* on the

same axes. Note that (e ™)> # e

Find the following logarithms without using a 78  Sketch carefully the graphs of the functions

calculator: (a) y=2% y=log,x (onthe same axes)
(a) log,8 (b) logﬁ (b)y y=e', y=Inx (on the same axes)
(c) logzi (d) log,81 (¢) y =10, y =logx (on the same axes)

e) logy3 f) log,0.5
(e) log, (f) log, 79  Sketch the graph of y = e™ — e™*. Prove that the

maximum of y is% and find the corresponding value

Express in terms of In x and In
P Y of x. Find the two values of x corresponding

(@ In@%)  (b) InV(xy)  (c) In(x"y?) toy =L
Express as a single logarithm 80  Express In y as simply as possible when
(@) In14 —In21 +1n6 (2 + 1)
y =
(b) 4In2 — $In25 (* + DR+ D

2.7.4 Hyperbolic functions

In applications, certain combinations of exponential functions recur many times and
these combinations are given special names. For example, the mathematical model for
the steady state heat transfer in a straight bar leads to an expression for the temperature
T(x) at a point distance x from one end, given by
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To(em([fx) _ efm(lfx)) + Tl(emx _ efm,\')
eml _ e—ml

T(x) =

where [ is the total length of the bar, T, and 7, are the temperatures at the ends and m
is a physical constant. To simplify such expressions a family of functions, called the
hyperbolic functions, is defined as follows:

coshx = %(e* + e ), the hyperbolic cosine
sinh x = %(e" — e "), the hyperbolic sine

sinh x

tanhx = the hyperbolic tangent

b
cosh x

The abbreviation cosh comes from the original Latin name cosinus hyperbolicus; simi-
larly sinh and tanh. If x is real the whole curve y = cosh x lies above the x axis and so
cosh x is never zero.

Thus, the expression for 7(x) becomes

Ty sinh m(l — x) + T, sinh mx

T(x) =
) sinh ml

The reason for the names of these functions is geometric. They bear the same relation-
ship to the hyperbola as the circular functions do to the circle, as shown in Figure 2.86.

Following the pattern of the circular or trigonometric functions, other hyperbolic
functions are defined as follows:

1
sechx = , the hyperbolic secant
cosh x
cosech x = — (x #0), the hyperbolic cosecant
sinh x
cothx = (x #0), the hyperbolic cotangent
tanh x

The graphs of sinh x, cosh x and tanh x are shown in Figure 2.87, where the black dashed
lines indicate asymptotes.

Figure 2.86

The analogy between
circular and hyperbolic
functions. The circle
has parametric
equations x = cos#,

y = sinf. The
hyperbola has
parametric equations

x = cosht,y =sinht.

sin 0

(a)

Y

M

tan 0

tanh ¢ |

sinh ¢

cos 6

~——N 1] P,

(b)
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Figure 2.87
Graphs of the
hyperbolic functions.

g y=cosh x Y
yi
Y v = tanh x
0 }
/ '-——:—1 ___________
/

The hyperbolic functions satisfy identities analogous to those satisfied by the circular
functions. From their definitions we have

coshx =Lt +e*
2t ) (2.39)
sinhx = 2(e* —e™)
from which we deduce
coshx + sinhx = e*
coshx — sinhx =e™*
and
(cosh x + sinh x)(cosh x — sinh x) = e'e™
that is,
cosh®x — sinh?x = 1 (2.40)
Similarly, we can show that
sinh(x &£ y) = sinh x cosh y & cosh x sinh y (2.41a)
cosh(x £ y) = cosh x cosh y &£ sinh x sinh y (2.41b)
tanh x * tanh
tanh(x % y) = 2 2.41¢)

1 + tanh x tanh y

To prove the first two of these results, it is easier to begin with the expressions on the
right-hand sides and replace each hyperbolic function by its exponential form. The third
result follows immediately from the previous two by dividing them. Thus

sinhxcoshy = z(e* —e ")’ +e7)
— %(e.wry +e" 7 — e*ery _ e*x*y)
and interchanging x and y we have

coshxsinhy = ;(e*™ + e’ ™ —e?™ —e™7)
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Example 2.58

Solution

Example 2.59

Solution

Adding these two expressions we obtain
sinh x cosh y + cosh x sinhy = 2 (e*" — e ™)

= sinh(x + y)

A function is given by f(x) = A cosh 2x + B sinh 2x, where A and B are constants and
f(0) = 5 and f(1) = 0. Find A and B and express f(x) as simply as possible.

Given f(x) = A cosh 2x + B sinh 2x with the conditions f(0) = 5, f(1) = 0, we see that
A(l) + B(O) =5

and
Acosh2 + Bsinh2 =0

Hence we have A = 5 and B = —35 cosh 2/sinh 2. Substituting into the formula for f(x)
we obtain

f(x) = Scosh2x — 5cosh2sinh 2x/sinh 2
_ 5sinh2cosh2x — 5cosh2sinh2x

sinh 2
_3sinh@ =20 - Gine (2.41a)
sinh 2
_ 5sinh2(1 — x)
sinh 2

Solve the equation

Scoshx + 3sinhx =4

The first step in solving problems of this type is to express the hyperbolic functions in
terms of exponential functions. Thus we obtain

JEe' te )t —eN)=4
On rearranging, this gives
4e* —4+e =0
or
4™ —4e*+1=0
which may be written as
2e*—1Y=0
from which we deduce

X

e’ = % (twice)

and hence
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Example 2.60

Solution

x=—In2

is a repeated root of the equation.

Osborn’s rule

In general, to obtain the formula for hyperbolic functions from the analogous identity for
the circular functions, we replace each circular function by the corresponding hyperbolic
function and change the sign of every product or implied product of two sines. This
result is called Osborn’s rule. Its justification will be discussed later (see Section 3.2.9).

Verify the identity

2 tanh x

tanh2x = ——
1 + tanh?x

using the definition of tanh x. Confirm that it obeys Osborn’s rule.

From the definition
2x —-2x
e'—e

tanh2x = ———
62“‘ + e—ZX
and
(e'—e™)? (e"+e ) +(e'—e)
(e* +e™)? (e* +e™)?
_2(e* + e

(ex + e—x)Z

1+ tanh%x =1+

Thus
2tanhx  2(e*—e™)/e*+te™)  (ef—e e t+e™)
1+ tanh’x  2(e* + e 2Y)/(e* + e™)? e e

eZ,\' _ 672,\’
= - —, = tanh 2x as required
et +e

The formula for tan 260 from (2.27e) is

2tan @

tan20 = ———
1 — tan?60

We see that this has an implied product of two sines (tan’6), so that in terms of hyper-
bolic functions we have, using Osborn’s rule,

2 tanh x

tanh2x = ——
1 + tanh%x

which confirms the proof above.




160 FUNCTIONS

2.7.5 Inverse hyperbolic functions

The inverse hyperbolic functions, illustrated in Figure 2.88, are defined in a completely
natural way:

y =sinh~'x (xin R)
y=cosh''x x=1,y=0)

y=tanh 'x (-1 <x<1)

Figure 2.88 y y y
Graphs of the inverse
hyperbolic functions.

y =sinh'x y=cosh™'x tanh™'x

<
Il

—
=

q
y
PR S
e ===
y

(@ (b) (c)

(These are also sometimes denoted as arsinh x, arcosh x and artanh x — not arcsinh x,
etc.) Note the restriction on the range of the inverse hyperbolic cosine to meet the
condition that exactly one value of y be obtained. These functions, not surprisingly, can
be expressed in terms of logarithms.

For example,

y =sinh™'x implies x =sinhy = %(e)' —e)
Thus

€)' —2xe*)—1=0
and

e =xtVar+ 1)

Since e’ > 0, we can discount the negative root, and we have, on taking logarithms,

y = sinh™'x = In[x + V& + 1)] (2.42)
Similarly,

cosh™'x =Inx + V&2 — 1)] (x=1) (2.43)
and

tanh~'x = %ln(i t i) (-1<x<1 (2.44)
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Example 2.61  Evaluate (to 4sf)
(a) sinh™'(0.5) (b) cosh™'(3) (c) tanh™'(—2/5)

using the logarithmic forms of these functions. Check your answers directly using a
calculator.

Solution (a) Using formula (2.42), we have
sinh™'(0.5) = In[0.5 + V(0.25 + 1)]
= In(0.5 + 1.118034)
= In(1.618 034)
= 04812
(b) Using formula (2.43), we have
cosh™'(3)= In(3 + \8) = 1.7627
(c) Using formula (2.44), we have

1 2
tanh™'(-2/5) = —1 >
anh™'(-2/5) 2n(1+§j

In MATLAB, notation associated with the hyperbolic functions is

hyperbolic cosine: cosh (x)
hyperbolic sine: sinh(x)
hyperbolic tangent: tanh (x)
inverse hyperbolic cosine: acosh (x)
inverse hyperbolic sine: asinh(x)

inverse hyperbolic tangent: atanh (x)

with the last three denoted by arccosh (x), arcsinh (x) and arctanh (x), respec-
tively, in MAPLE.
As an example, the commands

syms x
s = solve(5*cosh(x) + 3*sinh(x) == 4)
return
s = —-log(2)

confirming the answer in Example 2.60. (Note that -1og (2) is a repeated root.)
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81

82

83

84

85

2.7.6 Exercises

In each of the following exercises a value of one of
the six hyperbolic functions of x is given. Find the
remaining five.

(a) cosh x =2 (b) sinh x =&
(c) tanh x = —% (d) sechx =23

13

(e) cosech x =—3 (f) cothx =35

Use Osborn’s rule to write down formulae
corresponding to

— tan’x)t
(@) tan3x = (3 — tan“x)tan x

1 -3 tan’x
(b) cos(x + y) = cosxcosy — sinxsiny
(c) cosh?2x =1 + 2 sinh*x

(d) sinx — siny = 2sin3(x — y) cos3(x + y)

Prove that

(@ cosh™'x = In[x + V&> — )] (x=1)

(b) tanh‘lxz%lncti) (x| <1
Find to 4dp

(a) sinh™'0.8

(b) cosh™'2

(c) tanh™'(—0.5)

The speed V of waves in shallow water is given by

V? =1.8L tanh

86

87

88

where d is the depth and L the wavelength. If d = 30
and L = 270, calculate the value of V.

The formula

_ ot sinhor + sin ot
2 coshar — cosat

gives the increase in resistance of strip conductors
due to eddy currents at power frequencies. Calculate
Awhena = 1.075 and ¢ = 1.

The functions

fo(x) = Ltanh Lx

1
X) = ,
A 1+e™
are two different forms of activating functions
representing the output of a neuron in a typical
neural network. Sketch the graphs of f;(x) and f,(x)
and show that fi(x) — f,(x) = %

The potential difference E (in V) between a
telegraph line and earth is given by

E = Acosh x\/i + Bsinh x\/L
R R

where A and B are constants, x is the distance in km
from the transmitting end, r is the resistance per km
of the conductor and R is the insulation resistance
per km. Find the values of A and B when the length
of the line is 400km, r = 8 ), R = 3.2 X 10’Q) and
the voltages at the transmitting and receiving ends
are 250 and 200V respectively.

Irrational functions

The circular and exponential functions are examples of transcendental functions. They
cannot be expressed as rational functions; that is, as the quotient of two polynomials.
Other irrational functions occur in engineering, and they may be classified either as
algebraic or as transcendental functions. For example,

AN+ -1
PG+ +1

(x=-1)
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2.8.1

Example 2.62

Solution

is an algebraic irrational function. Here y is a root of the algebraic equation
=22+ x)y+x=0

which has polynomial coefficients in x.

On the other hand, y = x|, although it satisfies y> = x% is not a root of that equa-
tion (whose roots are y = x and y = —x). The modulus function |x| is an example of a
non-algebraic irrational function.

Algebraic functions

In general we have an algebraic function y = f(x) defined when y is the root of a
polynomial equation of the form

an(x)yn + an*l(-x)y'h] +...t al(x)y + ao(x) = 0
Note that here all the coefficients «, ... @, may be polynomial functions of the
independent variable x. For example, consider

y2—2xy — 8 =0
This defines, for x = 0, two algebraic functions with formulae

y=x+Vx>+8x) and y=x— x>+ 8x)

One of these corresponds to y* — 2xy — 8x = O with y = 0 and the other to y* — 2xy — 8x =0
with y < 0. So, when we specify a function implicitly by means of an equation we
often need some extra information to define it uniquely. Often, too, we cannot obtain
an explicit algebraic formula for y in terms of x and we have to evaluate the function at
each point of its domain by solving the polynomial equation for y numerically.

Care has to be exercised when using algebraic functions in a larger computation
in case special values of parameters produce sudden changes in value, as illustrated in
Example 2.62.

Sketch the graphs of the function

y = \(a + bx* + cx®)/(d — x)
for the domain —3 < x < 3, where
(@ a=18,b=1,c=—1landd =6
b) a=0,b=1,c=—-landd =0

(a) y =18 + x* — x)/(6 — x)

We can see that the term inside the square root is positive only when 18 + x* — x* > 0.
Since we can factorize this as (18 + x*> — x*) = (3 — x)(x*> + 2x + 6), we deduce that
y is not defined for x > 3. Also, for large negative values of x it behaves like (—x).
A sketch of the graph is shown in Figure 2.89.

(b) y = =" — x’)/x
Here we can see that the function is defined for x < 1, x # 0. Near x = 0, since we
can write x = \x? for x > 0 and x = — \Vx2 for x < 0, we see that

y=—VJ1—x) forx>0
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Figure 2.89 yi
Graph of y = V(18 +
X2 = xHI(6 — x).

\/_

-3 -2 -1 O 1 2 3 X
Figure 2.90 v
Graph of 2}
y = —\/(x2 — x3)/x. \

N
-2 -1 (0] 1 2 x
-1
and

y=V1-x) forx<0

At x = 0 the function is not defined. The graph of the function is shown in Figure 2.90.

2.8.2 Implicit functions

We have seen in Section 2.8.1 that some algebraic functions are defined implicitly
because we cannot obtain an algebraic formula for them. This applies to a wider
class of functions where we have an equation relating the dependent and independent
variables, but where finding the value of y corresponding to a given value of x requires
a numerical solution of the equation. Generally we have an equation connecting x and
y, such as

S, y) =0

Sometimes we are able to draw a curve which represents the relationship (using
algebraic methods), but more commonly we have to calculate for each value of x the
corresponding value of y. Most computer graphics packages have an implicit function
option which will perform the task efficiently.
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Example 2.63  The velocity v and the displacement x of a mass attached to a nonlinear spring satisfy
the equation

V=—4+x'+ A

where A depends on the initial velocity v, and displacement x,, of the mass. Sketch the
graph of v against x where

@ xg=1,v,=0
®) x,=3,v,=0

and interpret your graph.

Solution  (a) With x, = 1, vy = 0 we have A = 3 and
V=xt—4x’+3=x"-3)Hx*— 1)

To sketch the graph by hand it is easiest first to sketch the graph of v* against x, as shown
in Figure 2.91(a). Taking the ‘square root’ of the graph is only possible for v* = 0, but
we also know we want that part of the graph which has the initial point (x,, v,) on it.
So we obtain the closed loop shown in Figure 2.91(b). The arrows on the closed curve
indicate the variation of v with x as time increases. Where the velocity v is positive, the
displacement x increases. Where the velocity is negative, the displacement decreases.
The closed curve indicates that this motion repeats after completing one circuit of the
curve; that is, there is a periodic motion.

1

» X
—Vs\/—l 1\/@ -1

Ay
3
\ (x0,vD) / / \(xo,v(» .
N
-3

(a) Sketch of v? against x. (b) Sketch of v against x.

Figure 2.91 Graphs for Example 2.63(a).

(b) With x, =3, v, =0 we have A = —45 and
V=xt—4x* — 45 =(x* — 9 + 5)

Using the same technique as in part (a), we see that when the mass is released from
rest at x = 3, its displacement increases without a bound and the motion is not periodic.
The corresponding graphs are shown in Figures 2.92(a) and (b).
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Figure 2.92 Graphs
for Example 2.63(b).

Example 2.64

Solution

Figure 2.93 First
quadrant of four
planes.

v v
\ (xo,‘/%) /
X X
-9 3 3
—45
(a) Sketch of v? against x. (b) Sketch of v against x.

The concentrations of two substances in a chemical process are related by the equation
xyelr =2 0<x<3,0<y<3

Investigate this relationship graphically and discover whether it defines a function.

Separating the variables in the equation, we have
ye ¥ = 2e e/x

Substituting u = e*/x and v = ye” reduces this equation to
v=2e"u

so on the u—v plane the relationship is represented by a straight line. Putting the first
quadrants of the four planes x—y, v—y, u—x, u—v together we obtain the diagram shown
in Figure 2.93. From that diagram it is clear that the smallest value of u that occurs is

y
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Figure 2.94 Closed

form solution for
Example 2.64.

<

at P and the largest value of v that occurs is at Q, so all the solutions of the equation lie
between P and Q. Any point R which lies between P and Q on the line corresponds to
two values of y and two values of x. So each point R corresponds to four points of the
x—y plane. By considering all the points between P and Q we obtain the closed curve
shown in Figure 2.94. We can see from that diagram that the equation does not define a
function, since one value of x can give rise to two values of y. It is, of course, possible
to specify the range of y and obtain, in this case, two functions, one for y = 1 and the
other fory < 1.

This graphical method of studying the problem was first used in the study of predator—
prey relations in fish stocks by Volterra. It is sometimes called Volterra’s method. In
that context the closed curve solution indicated the periodic nature of the fish stocks.

In MATLAB, using the Symbolic Math Toolbox, commands for plotting the graph
of an implicitly defined function f = f(x, y) = 0 are

ezplot (£) plots f(x, y) = 0 over the default domain —27 < x < 2,
=27 <y<2mw

ezplot (£, [Xpinsr Xnax + Yain r Yuax)) PlOts f(x, y) = 0 over

Xnin <x< Xmax> Ymin < Yy < Ymax

ezplot (£, [min, max]) plots f(x, y) = 0 over min < x < max and
min <y < max

If fis a function of the two variables u# and v (rather than x and y) then the domain
end points U, Upaxs Vimin A0 V., are sorted alphabetically.
Check that the commands

max

syms X y
ezplot (x*y*exp(2 - y) - 2*exp(x - 1),1[0,3])

return the plot of Figure 2.94 and that the commands

syms x y
ezplot(y"2 - 2*y*cos(x) — 24, [0,3*pil)

return a plot similar to Figure 2.68.
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2.8.3

y
1
0 x
-1
Figure 2.95
y = sgnx.
y
1
O X
Figure 2.96
y = H(x).

Piecewise defined functions

Such functions often occur in the mathematical models of practical problems. For
example, friction always opposes the motion of an object, so that the force F is —R
when the velocity v is positive and +R when the velocity is negative. To represent the
force, we can write

F = —R sgn(v)

where sgn is the abbreviation for the signum function defined by

+1 (x>0)
sgn(x) =<1 (x <0)
0 (x=0)

and shown in Figure 2.95. The signum function is used in modelling relays.
The Heaviside unit step function is often used in modelling physical systems. It is
defined by

0 (x<0)

H(x) = 2.45
2 {1 (x=0) { )

and its graph is shown in Figure 2.96.

Three other useful functions of this type are the floor function |x|, the ceiling
function [x] and the fractional-part function FRACPT(x). (In older textbooks |x| is
denoted by [x] and is sometimes called the integer-part function.) These are defined by

| x| = greatest integer not greater than x (2.46)

[x] = least integer not less than x (2.47)
and

FRACPT(x) = x — |x] (2.48)

The floor and ceiling nomenclature and notation were introduced by the computer
scientist Kenneth E. Iverson in 1962.
These definitions need to be interpreted with care. Notice, for example, that

[3.43] =3
while
|—343] = —4
Similarly,
FRACPT(3.43) = 043 and FRACPT(—3.43) = 0.57

The graphs of these functions are shown in Figure 2.97.
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Figure 2.97

The graphs of the
“floor’, ‘ceiling’
and ‘fractional-part’
functions.

Example 2.65

Solution

Figure 2.98

y y v
3tk S

2F — 2 —

1 — 11— 1t
-3 -2-10 1123} S3-2-10] 123« -3 -2-10] 1

— 1= — {12

— {-3
(@ y=Ix] (b)) y=Ix (¢) y=FRACPT(x)

2 3 x

Care must be exercised when using the integer-part and fractional-part functions. Some
calculators and computer implementations are different from the above definitions.

Sketch the graphs of the functions with formula y = f(x), where f(x) is

(a) H(x — 1) — H(x — 2)

(b) [x] — 2[3x]

(a) From the definition (2.45) of the Heaviside unit function H(x) as

{O (x <0)
H(x) =
1 (x=0)

the effect of composing it with the linear function f(x) = x — 1 is to shift its graph 1
unit to the right, as shown in Figure 2.98(a). Similarly, H(x — 2) has the same graph as
H(x), but shifted 2 units to the right (Figure 2.98(b)). Combining the graphs in Figures
2.98(a) and (b), we can find the graph of their difference, H(x — 1) — H(x — 2), as
illustrated in Figure 2.98(c). Analytically, we can write this as

y
1 —

1

1

' >
(0] | 1 X

(a) y=H(x—1)

H(x-1)—H(x -2) =

y y
1 — 1 —
| Lo
| t > | t t
(6] 2 X O 1 2 X

(b) y=H(x-2)

0 (x<1)
1 (1=x<2)
0 (x=2)

() y=Hx—1)—

H(x—2)

(b) The graphs of | x| and 2|3x] are shown in Figure 2.99. Combining these, we can
find the graph of their difference, which is also shown in the figure.
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Figure 2.99

T T T T

HE
112345 x

o
—
(3]
w
N
=
©)
(3]
w
N
W
=
©)

l

(@ y=lx| (b) y=2l3x| (©) y=1lx—2l3x]

In MATLAB the Heaviside step, and the floor and ceiling functions are denoted
by Heaviside (x), floor (x) and ceil (x) respectively. The FRACPT function
may then be denoted by x-floor (x) . For example, taking x = —3.43 then

floor (=3.43) returns the answer -4
ceil(-3.43) returns the answer -3
FRACPT = —3.43 - floor (—3.43) returns the answer 0.5700

In symbolic form using Symbolic Math Toolbox, the above answers are also
produced.

2.8.4 Exercises

Check your answers using MATLAB whenever possible.

89  Sketch the graphs of the functions 92  Sketch the graphs of
—
@ y = &) (@ y=|x|
(b) y =V + 1), x = —1
(b) y =70+ [x])
© y=xU1+x,x=-1
© y=[x+1]

dy=V1+x)+V1l—-x),-1<x<1

90  Sketch the curves represented by

dy=|x|+|x+1]=2[x+2|+3

@ ¥ = x( = 1) @ lx+y[=1
(b) ¥ = (x = Dix = 3’

93  Sketch the graph of the functions f(x) with

91  Sketch the curves represented by the following formulae
equations, locating their turning points and
asymptotes:

(@) x* + y* = 6x?

@ f(x)= %H(x)

2 X
®y =" ®) £ = “HH) - Hex = 1)
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94

(¢) fx)= ﬂH(x) - 2(x -DH(x -1 95  Sketch the graph of the function
l l
X x=<0)
ax 2a
(d f(x)ZTH(X)—T(X—l)H(X—l) y=+0 0O<x=1
1-x (I1<x)
Show that the function g(x) = [H(x.— a) = Express the formula for y in terms of Heaviside
H(x — b)] f(x), a < b, may alternatively be f .
unctions.
expressed as
96  The function INT(x) is defined as the ‘nearest integer
0 (x<a) to x, with rounding up in the ambiguous case’. Sketch
e =1 F(0) (a=<x<b) the graph of this function and express it in terms of | x|.
0 (x=b) 97  Sketch the graphs of the functions

@ y=lx] = [x— 3]
In other words, g(x) is a function that is identical _ 1
b) y = [FRACPT(x) — >
to the function f(x) in the interval [a, b] and zero ®) | ® 2

elsewhere. Hence express as simply as possible 98

It is a familiar observation that spoked wheels do

in terms of Heaviside functions the function
defined by

not always appear to be rotating at the correct speed
when seen on films. Show that if a wheel has s
spokes and is rotating at n revolutions per second,
and the camera operates at f frames per second,

0 (x<0) .
then the image of the wheel appears to rotate at
% O<x<I N revolutions per second, where
fx) =

_ 1 1
aRl-9 < <ap v=L|rracpr[ L)L

I s 2 2
0 (x=2D)

Hence explain the illusion.

YR8 Numerical evaluation of functions

The introduction of calculators has greatly eased the burden of the numerical evaluation

Vi

1 of functions. Often, however, the functions encountered in solving practical problems
073 are not standard ones, and we have to devise methods of representing them numeric-
ally. The simplest method is to use a graph, a second method is to draw up a table of
values of the function, and the third method is to give an analytical approximation to the
function in terms of simpler functions. To illustrate this, consider the function e . We

o) 0322 0'.5 . can represent this by a graph, as shown in Figure 2.100.
To evaluate the function for a given value of x, we read the corresponding value of
Figure 2.100 y from the graph. For example, x = 0.322 gives y = 0.73 or thereabouts. Alternatively,

The graph of y = e™
for0 <x=<0.5.

Figure 2.101

X

we can tabulate the function, as shown in Figure 2.101. Note that the notation
x = 0.00(0.05)0.50 means for x from 0.00 to 0.50 in steps of 0.05.

Table of e * values for X |0.00 0.05 0.10

x = 0.00(0.05)0.50. ¢

0.20
~*1 1.0000 0.9512 0.9048 0.8607 0.8187 0.7788 0.7408 0.7047 0.6703 0.6376 0.6065

025 030 035 040 045 0.50
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2.9.1

Figure 2.102
Linear interpolation
fore™

(0.30 < x < 0.35).

To evaluate the function for a given value of x, we interpolate linearly within the
table of values, to obtain the value of y. For example, x = 0.322 gives

y = 0.7408 + 0322 2030y 7047 _ 0.7408)
0.35 — 0.30
= (.7408 + (0.44)(—0.0361) = 0.7480 — 0.015 884

= 0.7249

Another way of representing the function is to use the approximation

~x2—6x+12
X2 4+6x+12

—X

which will be obtained later in Example 7.38. Setting x = 0.322 gives
(0322 -6)0.322 + 12 10.171684
Y (0.322 + 6)0.322 + 12 14.035 684
= 0.72470 ...

The question remains as to how accurate these representations of the function are.
The graphical method of representation has within it an implicit error bound. When
we read the graph, we make a judgement about the number of significant digits in the
answer. In the other two methods it is more difficult to assess the error — but it is also
more important, since it is easy to write down more digits than can be justified. Are
the answers correct to one decimal place or two, or how many? We shall discuss the
accuracy of the tabular representation now and defer the algebraic approximation case
until later (see Section 7.11).

Tabulated functions and interpolation

To estimate the error involved in evaluating a function from a table of values as above,
we need to look more closely at the process involved. Essentially the process assumes
that the function behaves like a straight line between tabular points, as illustrated in
Figure 2.102. Consequently it is called linear interpolation. The error involved depends
on how closely a linear function approximates the function between tabular points, and
this in turn depends on how close the tabular points are.

If the distance & between tabular points is sufficiently small, most functions arising
from applications of mathematics behave locally like linear functions; that is to say, the
error involved in approximating to the function between tabular points by a linear func-
tion is less than a rounding error. (Note that we have to use a different linear function

0.74

0.70

0.30 035
0 0322 X
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o X X X X

Figure 2.103

Example 2.66

Solution

between each consecutive pair of values of the function. We have a piecewise-linear
approximation.) This, however, is a qualitative description of the process, and we need
a quantitative description. In general, consider the function f(x) with values f; = f(x,)
where x;, = x, + ih,i = 0, 1, 2, ..., n. To calculate the value f(x) at a non-tabular point,
where x = x; + 6h and 0 < 0 < 1, using linear interpolation, we have

— X

fO) = fi+ =" (fir1 = ) (2.49)

i+1 i

as shown in Figure 2.103.

The formula (2.49) may be written in a number of different ways, but it always gives
the same numerical result. The form used will depend on the computational context.
Thus we may write

F) ~f + 0(f., —f), where §=——"" and0<0<1 (2.50)
Xig1r — X
or
f(x) = 1T Xt f+ ! fis1  (Lagrange’s form) (2.51)
Xi = Xin1 Xivl — X

The difference f,., — f; between successive values in the table is often denoted by Af;,
so that (2.49) may be rewritten as

@) =f; + 0,

Use linear interpolation and the data of Figure 2.101 to estimate the value of

(a) e where x = 0.235 (b) x where e™ = 0.7107

(a) From the table of values in Figure 2.101 we see that x = 0.235 lies between the tabular
points x = 0.20 and x = 0.25. Applying the formula (2.49) with x; = 0.20, x,, = 0.25,
f; = 0.8187 and f;,, = 0.7788 we have

0.235-10.20

£(0.235) = 0.8187 + ————  (0.7788 — 0.8187) = 0.7868

0.25-0.20
(b) From the table of values we see that e = 0.7107 occurs between x = 0.30 and
x = 0.35. Thus the value of x is given, using formula (2.49), by the equation

x —0.30

0.7107 = 0.7408 + ————————(0.7047 — 0.7408)
0.35-0.30

Hence

_0.7107 - 0.7408

X = (0.35 - 0.30) + 0.30 = 0.3417
0.7047 — 0.7408
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The difficulty with both the estimates obtained in Example 2.66 is that we do not
know how accurate the answers are. Are they correct to 4dp or 3dp or less? The size
of the error in the answer depends on the curvature of the function. Because any linear
interpolation formula is, by definition, a straight line it cannot reflect the curvature of
the function it is trying to model. In order to model curvature a parabola is required,
that is a quadratic interpolating function. The difference between the quadratic inter-
polation formula and the linear formula will give us a measure of the accuracy of the
linear formula. We have

function value = linear interpolation value + C,

and
function value = quadratic interpolation value + C,

where ideally C, is very much smaller than C,. Subtracting these equations we see that
C, = quadratic interpolation value — linear interpolation value

Now to determine a quadratic function we require three points. Using formula (2.11)
obtained earlier, we see that the quadratic function which passes through (x;, f),
(X, fir) and (x;4,, fir,) may be expressed as

(x = x; D) = x;30) f; " (x = x)(x = X;0) fir

(X = XD (X — Xii2) (X1 = X)X — Xi42)

p(x) =

(x = x)(x = X)) fian

(X2 = X)X — Xi51)

We can simplify p(x), when the data points are equally spaced, by remembering that
Xipo =X+ 2h, x4, =x; + hand x = x; + 0h, with 0 < 0 < 1, giving

6-1O -2 06 -2 CICA!
G )f,-— ( )fMJr ( )fl_+2

p(x) 5 N 3

This formula looks intimidatingly unlike that for linear interpolation, but, after some
rearrangement, we have

pe) = Lfi + 0(fisy = D1 + 560 — D(fira = 2fis T £)
= [fi + 0Af] + 3600 — D(Afi1, — Af)

where 0 < 6 < 1. Here the term in square brackets is the linear interpolation approxi-
mation to f(x), so that

360 — D(Af., — Af)

is the quadratic correction for that approximation (remember: the correction is added
to eliminate the error). Note that this involves the difference of two successive differ-
ences, so we may write it as16(6 — 1)A%;, where A’f, = A(Af) = Af.,, — Af.
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Error in linear interpolation

We can use this to estimate the error in linear interpolation for a function. If
f) =f, + 6Af; + 16(0 — DA’

in the interval [x;, x;,,] then the error in using the linear interpolation

@)=, + 6,

will be approximately 16 (6 — 1)A’f;, and an estimate of the error bound of the linear
approximation is given by

106 — DA £
Orggélnze(e DA*fi]]

Now (0 — 1) = (8 —3)* — 1, so that max |66 — )| = %, and our estimate of the
error bound is 0=6=<I

HAVA

For accurate linear interpolation we require this error bound to be less than a rounding
error. That is, it must be less than + unit in the least significant figure. This implies

+]A%| < 7 unit of least significant figure
giving the condition
|A%f.| < 4 units of the least significant figure

for linear interpolation to yield answers as accurate as those in the original table.

Thus, from the table of values of the function e * shown in Figure 2.101 we can
construct the table shown in Figure 2.104. The final row shows the estimate of the
maximum error incurred in linear interpolation within each interval [x;, x;,,]. In order
to complete the table with error estimates for the intervals [0.00, 0.05] and [0.45,
0.50], we need values of e * for x = —0.05 and 0.55. From the information we have in
Figure 2.103 we can say that the largest error likely in using linear interpolation
from this table of eleven values of e * is approximately 3 units in the fourth decimal
place. Values obtained could therefore safely be quoted to 3dp.

i 0 1 2 3 4 5 6 7 8 9 10
X; 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
e 1.0000 0.9512 0.9048  0.8607 0.8187 0.7788  0.7408 0.7047  0.6703  0.6376  0.6065
% |A% | 0.00029 0.00028 0.00026 0.00025 0.00024 0.00023 0.00021 0.00020

Figure 2.104 Table of values of e™, with error estimates for linear interpolation.

Critical tables

An ordinary table of values uses equally spaced values of the independent variable
and tabulates the corresponding values of the dependent variable (the function values).
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A critical table gives the function values at equal intervals, usually a unit of the last
decimal place, and then tabulates the limits between which the independent variable gives
each value. Thus, for example, cos x> = 0.999 for 1.82 < x < 3.14 and cos x° = 0.998
for 3.14 = x < 4.06 and so on. Thus we obtain the table of values shown in Figure 2.105.
If a value of the independent variable falls between two tabular values, the value of
the dependent variable is that printed between these values. Thus cos 2.62° = 0.999.
The advantages of critical tables are that they do not require interpolation, they always
give answers that are accurate to within half a unit of the last decimal place and they
require less space.
Figure 2.105 x | 0.00 1.82 3.14 4.06 4.80 5.44
A critical table cos x°| 1.000 0.999 0.998 0.997 0.996
for cos x°.
2.9.2 Exercises
99 Tabulate the function f(x) = sin x for 102 Assess the accuracy of the answers obtained
x = 0.0(0.2)1.6. From this table estimate, by linear in Question 96 using quadratic interpolation
interpolation, the value of sin 1.23. Construct a (Lagrange’s formula, (2.11)).
table equivalent to Figure 2.102, and so estimate
the error in your value of sin 1.23. Use a pocket 103 Show that Lagrange’s interpolation formula for

100

101

calculator to obtain a value of sin 1.23 and
compare this with your estimates.

Tabulate the function f(x) = x* for x = 4.8(0.1)5.6.
Construct a table equivalent to Figure 2.102, and

cubic interpolation (see Section 2.4) is

o) = (x = x)(x = x)(x = x3)

(X = XXy = )(xg — X3)

fo

(X = xp)(x = x)(x — x3)

hence estimate the largest error that would be h
incurred in using linear interpolation in your table (4 = X)) = 20)( — x3)
of V.alues over the range [5.0, 5.4]. Copstruct.a (x — xo)(x — x)(x — x3)
similar table for x = 4.8(0.2)5.6 (that is, for linear f
. . . . .o (ry = xp)(xy = x)(x, = x3)
interpolation with twice the tabulation interval)
and estimate the largest error that would be (x = x)(x = x)(x = x5) f
3

incurred by linear interpolation from this table
in the range [5.0, 5.4]. What do you think the
maximum error in interpolating in a similar table
formed for x = 4.8(0.05)5.6 might be? What
tabulation interval do you think would be needed
to allow linear interpolation accurate to 3dp?

The function f(x) is tabulated at unequal intervals
as follows:

X 15
fx) 0.2316

18
0.3464

20
0.4864

Use linear interpolation to estimate f(17), /(16.34)
and £'(0.3).

104

(x5 = ) (x5 = x)(x3 — xy)

Use this formula to find a cubic polynomial that
fits the function f given in the following table:

-1 0 1 8

X
S -1 0 1 2

Draw the graph of the cubic for —1 < x < 8 and

compare it with the graph of y = x'*.

Construct a critical table for
y = 3\/)6
for y = 14.50(0.01)14.55.
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2.10 Engineering application: EXEIfafd(o ]

Mathematics plays an important role in engineering design. We shall illustrate how
some of the elementary ideas described in this chapter are used to produce optimal
designs. Consider the open container shown in Figure 2.106. The base and long sides
are constructed from material of thickness rcm and the short sides from material of
thickness 3#cm. The internal dimensions of the container are /cm X bcm X hcm. The
design problem is to produce a container of a given capacity that uses the least amount
of material. (Mass production of such items implies that small savings on individual
items produce large savings in the bulk product.) First we obtain an expression for the
volume A of material used in the manufacture of the container.

Figure 2.106

The capacity C of the box is C(I, b, h) = Ibh. Then
A(l, b, h,ty=C(+6t,b+ 2t,h + 1) — C(, b, h)
=+ 600b + 20)h+ 1) — Ibh
= (Ib + 6bh + 2hl)t + (21 + 6b + 120)t* + 121’ (2.52)

For a specific design the thickness ¢ of the material and the capacity K of the container
would be specified, so, since [bh = K, we can define one of the variables /, b and 4 in
terms of the other two. For example, [ = K/bh.

For various reasons, for example ease of handling, marketing display and so on, the
manufacturer may impose other constraints on the design. We shall illustrate this by
first considering a special case, and then look at the more general case.

Special case

Let us seek the optimal design of a container whose breadth b is four times its height
f(h) h and whose capacity is 10000 cm®, using material of thickness 0.4cm and 1.2 cm (so
that + = 0.4). The function f(/) that we wish to minimize is given by A(l, b, h, f), where

t = 0.4, b = 4h and Ibh = 10000 (so that [ = 2500/h%). Substituting these values in
(2.52) gives, after some rearrangement,

f(h) = 9.61* + 5.76h + 0.768 + 6000/h + 800/h*

o é zll é é 1'0 > The graph of this function is shown in Figure 2.107. The graph has a minimum point
near h = 7. We can obtain a better estimate for the optimal choice for & by approximat-
Figure 2.107 ing f(h) locally by a quadratic function. Evaluating fat h = 6, 7 and 8 gives
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f(6) = 1403.2, f(7) = 1385.0, f(8) = 1423.7

This shows clearly that the minimum value occurs between 7 = 6 and h = 8.
We approximate to f(h) using a local quadratic approximation of the form

f(h=Ah—-T7*+Bh—-T7)+C

Setting h = 7 gives C = 1385.0
Setting h = 6 gives A — B + C = 1403.2
Setting h = 8 gives A + B + C = 1423.7

Hence C = 1385.0, A = 28.45 and B = 10.25. The minimum of the approximating
quadratic function occurs where h — 7 = —B/(2A); thatis, at h = 7 — 0.18 = 6.82.
Thus the optimal choice for £ is approximately 6.82 giving a value for f(/) at that point
of 1383.5.

The corresponding values for b and [ are b = 27.3 and [ = 53.7. Thus we have
obtained an optimal design of the container in this special case.

General case

Here we seek the optimal design without restricting the ratio of b to 4. For a container
of capacity K, we have to minimize A(l, b, h, t) subject to the constraint C(/, b, h) = K.
Here

A(L b, h, 1) = (Ib + 6bh + 2hD)t + (21 + 6b + 12h)t* + 12¢°
and
C(l, b, h) = Ibh

These functions have certain algebraic symmetries that enable us to solve the problem
algebraically. Consider the formula for A and set x = 2h and y = [/3, then

A(l, b, h, t) = 3(by + bx + xy)t + 6(y + b + x)* + 12¢°
= A*(y, b, x, t)
and
C(l, b, h) = 3bxyl2

From this we can conclude that if A*(y, b, x, ) has a minimum value at (y,, b,, x,)
for a given value of ¢, then it has the same value at (x,, by, o), (X0, Yo Do)s (¥o» Xos Do),
(bgs ¥o» Xo) and (by, Xy, ¥). Assuming that the function has a unique minimum point, we
conclude that these six points are the same, that is b, = y, = x,. Thus we deduce that the
minimum occurs where [ = 6k and b = 2h. Since the capacity is fixed, we have [bh = K,
which implies that 124* = K.

Thus the optimal choice for 4 in the general case is (75 K)".

Returning to the special case where K = 10000 and ¢ = 0.4, we obtain an optimal
design when

h =941, b=18.82, [=5646

using 1330.1 cm® of material. Note that the amount of material used is close to that used
in the special case where b = 4h. This indicates that the design is not sensitive to small
errors made during its construction. See Example 9.44.
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2 B X F T TG P T o T (0] Ml an optimization problem

A company owns two mines: mine X produces 1 ton of high-grade ore, 3 tons of
medium-grade ore and 5 tons of low-grade ore each day while mine Y produces 2 tons
of each grade ore each day. The company needs 80 tons of high-grade, 160 tons of
medium-grade and 200 tons of low-grade ore. It costs £2000 a day to operate each
mine. How many days should each mine be operated to minimize the cost?

We can summarize the information using a table:

Mine X Y Requirements
Grade

High 1 2 80

Medium 3 2 160

Low 5 2 200
Cost/day 2000 2000

Running X for x days and Y for y days to meet the requirements gives the inequalities
x + 2y =80
3x + 2y = 160
5x + 2y =200

with the associated cost C = 2000x + 2000y. Also we know that x = 0 and y = 0.

The set of feasible solutions is shown tinted in Figure 2.108. The feasible costs are
also shown in the diagram. They are represented by lines parallel to x + y = C/2000.
The minimum cost is given by the cost line closest to the origin. This is the line that
passes through the point A(40, 20).

Thus the company should operate mine X for 40 days and mine Y for 20 days to
minimize the cost. This is an example of optimization using linear programming.
Linear programming is discussed in detail in the companion book Advanced Modern
Engineering Mathematics in Chapter 10.

Figure 2.108 Set of y
feasible solutions. 100
\\
A\
80 [t Feasible
\\ solutions
\ ‘\\
\\ AN
AN \ AN
ANER N
N, \‘
40 BN B =
N N L~ —y+
N Tl 2000 Y
>4, , Cost line
AN
~ AN
~N N
N N -

0 40 53% 80 N«
Minimum

cost line
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2.12 Review exercises (1-23)

Check your answers using MATLAB whenever possible.

1  The functions f'and g are defined by and minor axis 13 cm, and is to be of length 2m.
f(x)=x*—4 (xin [—20, 20]) Estimate the area of sheet metal required.

glx) = x" (xin [0, 200]) 3 The sales volume of a product depends on its price
Let i(x) and k(x) be the compositions f° g(x) and as follows:
g ° f(x) respectively. Determine A(x) and k(x). Is
the composite function k(x) defined for all x in the Pricel£ 1.00 1.05 1.10 1.15 1.20 1.25 1.30
domain of f(x)? If not, then for what part of the Sales/000 | 8 7 6 5 4 3 2
domain of f(x) is k(x) defined?

The cost of production is £1 per unit. Draw up a
table showing the sales revenue, the cost and the

) ) ) profits for each selling price, and deduce the selling
perimeter = 2 - (major axis) + E(m) price to be adopted.

2  The perimeter of an ellipse depends on the lengths
of its major and minor axes, and is given by

where
4 A function fis defined by

(major axis)® — (minor axis)’
m =

(major axis)? x+1 (x=-1
and E is the function whose graph is given in f=30 (-Isx<D
Figure 2.109. x—=1 (x>1

(a) Calculate the perimeter of the ellipse whose

axes are of length 10cm and 6cm. Draw the graphs of f(x), f(x — 2) and f(2x). The

function g(x) is defined as f(x + 2) — f(2x — 1).
(b) A fairing is to be made from sheet metal bent Draw a graph of g(x).

into the shape of an ellipse of major axis 55cm
5  The function f(x) has formula y = x* for 0 < x < 1.

112 ‘ Sketch the graphs of f(x) for —4 < x < 4 when
AN u (a) f(x) is periodic with period 1;
" (b) f(x) is even and periodic with period 2;
. \\ (c) f(x)is odd and periodic with period 2.
N
14 \\ 6  Assuming that all the numbers given are correctly
\\ rounded, calculate the positive root together with
. N its error bound of the quadratic equation
13 AN 14> +57x —23=0
Give your answer also as a correctly rounded number.
1.2 -
" 7 Sketch the functions
. @ x*—4x+7 @O —2x2+4x—3
o \
Y X+ 4 X2 —2x+3
c d) ——
()x2—1 ()x2+2x—3
1.0 >
0 02 04 0.6 08 1L.O0m 8 Find the Taylor expansion of

Figure 2.109 x* 4+ 3x* — x> + 2x — 1 about x = 1
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10

11

12

13

Find the partial fractions of

x+2 X2+ 4
S S b) —= "~
€ (x—-D(x—-4) ()(x+1)(x—3)
© x> —-2x+3 ) x(2x - 1)

x+22(x -1 (x* —x+D(x +3)

Express as products of sines and/or cosines

(a) sin 20 — sin 6 (b) cos 26 + cos 360

(c) sin 46 — sin 760

Express in the form r sin(6 — «)

(a) 4sin6 — 2 cos b (b) sin® + 8 cos O

(©) V3 sin 6 + cos 6

(a) From the definition of the hyperbolic sine
function prove

sinh 3x = 3 sinh x + 4 sinh’x

(b) Sketch the graph of y = x* + x carefully, and
show that for each value of y there is exactly one
value of x. Setting z = +xV3, show that

473 +3z:¥y

and using (a), deduce that

ngsmh[ sinh™ (\/3 ):|

The parts produced by three machines along a
factory aisle (shown in Figure 2.110 as the x axis)
are to be taken to a nearby bench for assembly
before they undergo further processing. Each
assembly takes one part from each machine. There
is a fixed cost per metre for moving any of the
parts. Show that if x represents the position of the
assembly bench the cost C(x) of moving the parts
for each assembled item is given by

C(x) = d(x)

where d(x) = |x+3| +|x—2|+ |x—4|.

-4 -3-2-1 01 2 3 4
Figure 2.110

14

15

16

17

18

Draw the graph of d(x) and find the optimal
position of the bench.

Sketch the graphs of the functions
@ [5x] = 2[5x]

(b) xH(x) — (x — DH(x — 1) + (x — 2)H(x — 2)

Draw up a table of values of the function

f(x) = x*¢ *for x = —0.1(0.1)1.1. Determine the
maximum error incurred in linearly interpolating
for the function f(x) in this table, and hence
estimate the value of f(0.83), giving your estimate
to an appropriate number of decimal places.

By setting ¢ = tan %x, find the maximum value of
(sin x)/(2 — cos x).
(a) Show that a root x, of the equation
X =pP+qg=0
is a repeated root if and only if
X, — 3p =0

(b) The stiffness of a rectangular beam varies
with the cube of its height /2 and directly with its
breadth b. Find the section of the beam that can be
cut from a circular log of diameter D that has the
maximum stiffness.

Starting at the point (x,, y,) = (1, 0), a sequence
of right-angled triangles is constructed as shown
in Figure 2.111. Show that the coordinates of the
vertices satisfy the recurrence relations

Xi = X1 = Wi
Vi = WiXio Ty

where w; = tana;, x, = 1 and y, = 0.

YA
(*3,y3)
(o62,)2)
(1,1
a;
431

0 (*0:Y0) X
Figure 2.111
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Any angle 0° < 0° < 360° can be expressed in
the form

0= ini(Pi

i=0

where tan ¢ = 10" and n, is a non-negative
integer. Express 6 = 56.5 in this form and, using
the recurrence relations above, calculate sin 6°
and cos 6° to 5dp. (This method of calculating
the trigonometric functions is used in some
calculators.)

19 A mechanism consists of the linkage of three rods
AB, BC and CD, as shown in Figure 2.112, where
AB = CD (= q, say), BC = AD = a\2, and M is
the midpoint. The rods are freely jointed at B
and C, and are free to rotate about A and D.
Using polar coordinates with their pole O at the
midpoint of AD and initial line OD, show that
the curve described by M as CD rotates about D

Figure 2.112

20

21

22

23

is r* = a?* cos 26. Draw a careful graph of this
curve, the ‘lemniscate’ of Bernoulli.
Show that

(a) the cartesian coordinates of M satisfy
(x2 4 yZ)Z — a2(x2 _ yZ)
(b) AM X DM = 1d”.

Show that the equation
r = plsin(f — «)

represents a straight line which cuts the x axis
at the angle « and whose perpendicular distance
from the origin is p.

Use the result of Question 20 to find the polar
coordinate representation of the line which passes
through the points (1, 2) and (3, 3).

Show that the equation

r = epl(1 + ecosh)

where e and p are constants, represents an ellipse
where 0 < e < 1, a parabola where ¢ = 1 and a
hyperbola where e > 1, the origin of the coordinate
system being at a focus of the conic concerned.

Continuing Question 54 of Exercises 2.6.2, show that

_12+d?
44

cot O

and by applying the arithmetic—geometric inequality
to

3 d

— + —

d 4
deduce that 6° achieves its maximum value where
d=2\3.
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Introduction

Complex numbers first arose in the solution of cubic equations in the sixteenth century
using a method known as Cardano’s solution (from Gerolamo Cardan (1501-1576), a
Renaissance mathematician). This gives the solution of the equation

X+g+r=0
as

x = N+ VG + 5]+ N4 = VG + 4]

which may be verified by direct substitution. This solution gave difficulties when it
unexpectedly involved square roots of negative numbers. For example, the equation

xX*=15x—-4=0

was known to have three roots. An obvious one is x = 4, but the corresponding root
obtained using the formula was

x =N2 +(—12D)] + N2 — (- 12D)]
Writing in 1572, Bombelli showed that
2 +\(=121) = 2 + (= DT’
and
2 =\(=12) = 2 = V(= DF
and so
X =2+ NDI+ 2 == = 4
as expected. Since
V(=) = (= x

where x is a positive number, the square roots of negative numbers can be represented
as a number multiplied by y(—1). Thus \(—121) = 11y(— 1), (—4900) = 70y(—1) and
so on. Because the introduction of the special number \(—1) simplified calculations, it
quickly gained acceptance by mathematicians. Denoting \(— 1) by the letter j, we obtain
the general number z where

z=x+]jy

Here x and y are ordinary real numbers and obey the Fundamental Rules of Arithmetic.
(Most mathematics and physics texts use the letter i instead of j. However, we shall follow
the standard engineering practice and use j.) The number z is called a complex number.
The ordinary processes of arithmetic still apply, but become a little more complicated. As
well as simplifying the process of obtaining roots as above, the introduction of j = \(—1)
simplified the theory of equations, so that, for example, the quadratic equation

ax*+bx+c=0
always has two roots

o —b £ (b* - 4ac)
2a
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3.2.1

Figure 3.1
The Argand diagram:
z=x+jy.

These roots are real numbers when b* = 4ac and complex numbers when b* < 4ac.
Thus, any irreducible quadratic (see Section 2.3.4) may be factorized into two complex
factors. Thus x* + 2x + 5 = (x + 1 + j2)(x + 1 — j2). It then follows from property (ii)
of the polynomial functions, given earlier (see Section 2.4.1), that any polynomial
equation of degree n having real coefficients has exactly n roots which may be real or
complex. This is a result known as the Fundamental Theorem of Algebra, which is
also valid for polynomial equations having complex coefficients. Thus

X =T —6x* 4+ 4x° —28x—24=0
is an equation of degree seven and has the seven roots
x=-1,-2,-3,-1—j—-1+j,1—j1+]

As has often been the case, what began as a mathematical curiosity has turned out to
be of considerable practical importance, and complex numbers are invaluable in many
aspects of engineering analysis. An elementary, but important, application is discussed
later in this chapter.

Properties

To specify a complex number z, we use two real numbers, x and y, and write
z=x+]jy

where j = \(—1), and x is called the real part of z and y its imaginary part. This is
often abbreviated to

z=x+jy, wherex = Re(z) and y = Im(z)

Note that the imaginary part of z does not include the j. For example, if z = 3 — j2 then
Re(z) = 3 and Im(z) = —2. If x = 0, the complex number is said to be purely imaginary
and if y = O it is said to be purely real.

The Argand diagram

Geometrically, complex numbers can be represented as points on a plane similar to the
way in which real numbers are represented by points on a straight line (see Section 1.2.1).
The number z = x + jy is represented by the point P with coordinates (x, y), as shown in
Figure 3.1. Such a diagram is called an Argand diagram, first used by Caspar Wessel
(1745-1818) but named after the self-taught amateur Jean-Robert Argand (1768—1822).
The x axis is called the real axis and the y axis is called the imaginary axis.

y=1Im(z) |
P(z)

--— = —

F————e

Oe—Xx—> x=Re(z)
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Example 3.1

Solution

Figure 3.2

3.2.2

Example 3.2

Represent on an Argand diagram the complex numbers

(a) 3+j2 (b) =5+j3 (c) 8 —j5 d —2-33

(a) The number 3 + j2 is represented by the point A(3, 2)

(b) The number —5 + j3 is represented by the point B(—35, 3)
(c) The number 8 — j5 is represented by the point C(8, —5)

(d) The number —2 — j3 is represented by the point D(—2, —3)

as shown in Figure 3.2.

--------------------  C(8,-5)

The arithmetic of complex numbers

(i) Equality

If two complex numbers z; = x, + jy, and z, = x, + jy, are equal then they are represented
by the same point on the Argand diagram and it clearly follows that

X =x, and y, =y,

That is, when two complex numbers are equal we can equate their respective real and
imaginary parts.

If the two complex numbers

z7=Ba+2)+jBb—1) and z,=0b+1)—jla+2—0>b)
are equal
(a) find the values of the real numbers a and b;

(b) write down the real and imaginary parts of z, and z,.
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Solution

Example 3.3

Solution

(a) Since z; = z, we can equate their respective real and imaginary parts, giving
Ba+2)=0bB+1) or 3a—b=—-1

and
Bb—-—1)=—(a@+2—-b) or a+2b=-1

Solving for a and b then gives

- _3 __2
a=-5, b=-3

(b) Re(z;)=3a+2= %
thus  Re(z;) = Re(z,) = 2

Re(zy) =b+1=2
Im(z)=3b-1=-1
13
thus  Im(z) = Im(z,) = -
Im(z,) =—(a+2-b)=-1

. 5 _:13
and the complex number is > —j =

(ii) Addition and subtraction

To add or subtract two complex numbers, we simply perform the operations on their
corresponding real and imaginary parts. In general, if z;, = x, + jy, and z, = x, + jy, then

4+t = 0+ x) + i+ )
and
L= 5= x) iy — )
In the next chapter (see Section 4.2.6) we shall interpret complex numbers geometri-

cally as two-dimensional vectors and illustrate how the rules for the addition of vectors
can be used to represent the addition of complex numbers in the Argand diagram.

Ifz, =3 +j2 and z, = 5 — j3 determine

(@ z; + 2, b) z— 2

(a) Adding the corresponding real and imaginary parts gives
Zt=03+5 +j2-3) =8 —jl
(b) Subtracting the corresponding real and imaginary parts gives

(iii) Multiplication
When multiplying two complex numbers the normal rules for multiplying out brackets
hold. Thus, in general, if z;, = x; + jy, and z, = x, + jy, then
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Example 3.4

Solution

Example 3.5

Solution

212 = (0 + jy)0n + jy)
= X2+ v + oy + Py
Making use of the fact that j* = —1 then gives

212 = X1 = Y1+ Jy, T x0y)
Ifz, =3 +j2 and z, = 5 + j3 determine z,z,.
22 = B+ 2G5 +j3) =15 +j10 +j9 + j%6

= 15— 6 + j(10 + 9), using the fact that * = —1
9+ 19

(iv) Division
The division of two complex numbers is less straightforward. If z; = x; + jy, and

Z, = X, t jy,, then we use the following technique to obtain the quotient. We multiply
‘top and bottom’ by x, — jy,, giving
_ &t W (o + y)Gn —jy)

L, Xty - (xy + jy2)(xp = jy2)

Multiplying out ‘top and bottom’, we obtain

o _ (15 + y1y2) + jOoy — x1),)
z X3+ y3

giving

a9 (Xx1x0 + yiy2) . oy — X1)2)
2 2 2 2
Z X3 + Y2 X3 t Y2

The number x — jy is called the complex conjugate of z = x + jy and is denoted by z*.
(Sometimes the complex conjugate is denoted with an overbar as z.) Note that the
complex conjugate z* is obtained by changing the sign of the imaginary part of z.

Ifz;=3+j2 and z, =5 + j3 determine a
Z

5 _3+j2
Zy 5 + J3
Multiplying ‘top and bottom’ by the conjugate 5 — j3 of the denominator gives
o _B+6-13)
G+PG-)3)
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Example 3.6

Solution

3.2.3

Example 3.7

Solution

Multiplying out ‘top and bottom’, we obtain

34 _ (1546 +i10-9) _204j
S+3 (2549 +j(5-15 34 #)

Find the real and imaginary parts of the complex number z + 1/z forz = (2 + j)/(1 — j).

2+ Q@+pa+) 1+,
TG T . ST =212
I-j d-=-pad+) 2
then
L2 2= =2—j6=l_ji
1+§3 (1+3)1-j3) 10 50
so that
- =GHiDTG-iD=G+P+iG-D=y5+ig
giving

1 1
Re(z+—j:% and Im(z+—j:%
z z

Complex conjugate
As we have seen above, the complex conjugate of z = x + jyisz* = x — jy. Inthe Argand
diagram z* is the mirror image of z in the real or x axis. The following important
results are readily deduced.
z + z* = 2x = 2 Re(z)
z — 7% = 2jy = 2jIm(z) 3.1)
2t = (x ) —jy) = 2"+ y°
(212)* = 2725
with the next to last result indicating that the product of a complex number and its
complex conjugate is a real number.

The zeros of an irreducible quadratic function, which has real coefficients, are
complex conjugates of each other.

Express the zeros of f(x) = x> — 6x + 13 as complex numbers.

The zeros of f(x) are the roots of the equation

x2—6x+13=0
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Using the quadratic formula (1.8) we obtain
‘= 6 £(36—-52) 6++(-16)
2 2

64D
==

So the two zeros form a conjugate pair.

342

Example 3.8  Find all the roots of the quartic equation
xt+4x*+16=0

Solution  Rewriting the equation we can achieve a difference of squares which makes possible a
first factorization

x4 8x2+ 16 — 4x? = (x* + 4)* — 4x?
=[(x*+4) — 2x][(x> + 4) + 2x]

Now x> —=2x+4=(x—1)>+3 and x> + 2x + 4 = (x + 1)> + 3, so we obtain the
equations

x—1=4j\3 and x+1=4j\3
and the four roots of the quartic equation are
x=1+731—j3, —1+j3, —-1—-j3

These roots form two conjugate pairs.

Example 3.9  For the complex numbers z; = 5 + j3 and z, = 3 — j2 verify the identity

(z12)* = zifz¥

Solution 2 =G+ 3B -2 =15+6+jO—10) =21 —
(Z]Zz)* =21 +J
f2F=05-j3)3+j2) =15+ 6 +j(10 —9) =21 +j

Thus (2)2)* = 225"

3.2.4 Modulus and argument

As indicated in the Argand diagram of Figure 3.3, the point P is specified uniquely if
we know the length of the line OP and the angle it makes with the positive x direction.
The length of OP is a measure of the size of z and is called the modulus of z, which
is usually denoted by mod z or |z|. The angle between the positive real axis and OP is
called the argument of z and is denoted by arg z. Since the polar coordinates (7, #) and
(r, @ + 27) represent the same point, a convention is used to determine the argument
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y
P(x,y) or P(z)
r
y
Y 6
O | X X
Figure 3.3

Modulus (r) and
argument (6) of the
complex number
z=x+jy.

Example 3.10

of z uniquely, restricting its range so that —7 < arg z < 7. (In some textbooks this
is referred to as the ‘principal value’ of the argument.) The argument of the complex
number 0 + jO is not defined.

Thus from Figure 3.3, |z| and arg z are given by

|z| = r = (x* + y?) }
3.2)

argz =60 where tanf = y/x, z # 0

Note that from equations (3.1)
¥ =x*+y =z

There are two common mistakes to avoid when calculating |z| and arg z using (3.2).
First, note that the modulus of z is the square root of the sum of squares of x and y, not
of x and jy. The j part of the number has been accounted for in the representation of the
Argand diagram. The second common mistake is to place 0 in the wrong quadrant. To
avoid this, it is advisable when evaluating arg z to draw a sketch of the Argand diagram
showing the location of the number.

Determine the modulus and argument of

(@ 3+2 (b)) 1—]j () —1+j ) —V6 — j\2

Solution Note that the sketches of the Argand diagrams locating the positions of the complex
numbers are given in Figure 3.4(a—d).
(@) [34j2] =N3>+ 2% = (9 + 4) =13 = 3.606
. (2
arg(3 + j2) = tan 3 = (0.588
() |1 =j] =VI1>+ (=17 =\2 = 1414
. 41 .
arg(l —j) = —tan I =47
y y y
(3,2) (—1,1)
Ao o R
O X O 9 X 0} X oo 0 X
r . E y
(1-1) (—6,~2)

Figure 3.4
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© [=14j]=\(=17 + '] =\2 = 1.414
1 -1 1 1 3
arg(—1 +j) = m — tan 1 =T — 4T =37

(d) |[-V6 — j\2| = V(6 + 2) = V8 = 2.828

arg(—\6 — j\2) = —(7 — tan '2) = —(x — tan ') = —(1 —g7) = —57

MATLAB handles complex numbers automatically. Either i or j can be used
to denote the imaginary part, but in any output to a command, MATLAB will
always use i. Consequently, to avoid confusion i will be used throughout
when using MATLAB, so, for example, the complex number z = 4 + j3 will be
entered as

z = 4 + 31

Note that the i is located after the number 3 and there is no need to insert the
multiplication sign * between the 3 and the i (if it is located before then * must
be included). However, in some cases it is necessary to insert *; for example, the
complex number z = —1 + j- must be entered as

z = -1/2 + (1/2)*1

The complex conjugate z* of a complex number z is obtained using the command
conj; for example, to obtain the conjugate of z = 4 + j3 enter the commands

MATLAB
4 + 31;
zbar = conj(z)

7z =

which return

zbar = 4 - 31

The arithmetical operations of addition, subtraction, multiplication and division
are carried out by the standard operators +, —, * and / respectively. For example, if
zy,=4+j3 and z, = —3 + j2 then z; = z;, + z, and z, = z,/z, are determined as
follows:

MATLAB

zl = 4 + 31;

z2 = -3 + 2i;

z3 = z1 + z2

returns

z3 = 1.0000 + 5.00001
and the further command

z4 = z1/z2

returns

z4 = -0.4615 - 1.30771
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Exact arithmetic may be undertaken in MATLAB using the Symbolic Math Toolbox
with the command doub1e used to obtain numerical results. For example, the commands

syms zl z2 z4
z1l = sym(4 + 31i); z2 = sym(3 + 21i); z4 = z1/z2

return

z4 = £+
and

double (z4)
returns

z4 = 1.3846 + 0.07691

The real and imaginary parts of a complex number are determined using the commands
real and imag respectively. Considering Example 3.6 the MATLAB commands

z = (2 + 1i)/(1 - i); zl1 = z + 1/z;
real (zl)

return the answer 0. 7000 and the further command
imag(z1l)

returns the answer 0. 9000, thus confirming the answers obtained in the given solution.
To represent complex numbers as points on an Argand diagram check that the
following commands reaffirm the solution given in Example 3.1:

zl = 3+ 2i; x = real(zl); y = imag(zl);
plot(x,y,'*")

xlabel('x = Re(z)'")

ylabel('y = Im(z)")

hold on

plot([-6,9],[0,0], 'k")

plot([0,0], [-6,4], 'k'")

z2 = -5 + 31i; x = real(z2); y = imag(z2);
plot(x,y, '*')

z3 = 8 - 5i; x = real(z3); y = imag(z3);
plot(x,y, '*')

z4 = -2 - 31i; x = real(z4); y = imag(z4);
plot(x,y, '*')

To label the points add the additional commands

text(3.2,2, 'A(3 )')
text (-5, 'B ( 3)")
text(8.2,-5, 'C(8, 75)')
text(-2,-3.3, 'D(-2,3)")
plot(x ')

hold off
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[Note: (1) The '*' in the plot commands means that the point will be printed as an
asterisk; alternatives include '. "', 'x' and '+'.
(2) The hold on command holds the current axes for subsequent plots.
(3) The two plot commands following the hold on command draw the x
and y axes with the entry k indicating that the lines are drawn in black
(alternatives include b for blue, r for red and g for green).]

Symbolically the MATLAB commands

syms x y real
z = x + i*y

create symbolic variables x and y that have the additional property that they are real.
Then z is a complex variable and can be manipulated as such. For example,

conj (z) returns x — i*y and expand (z*conj (z)) returns x*2 + y*2

The modulus and argument (measured in radians) of a complex number z can be
calculated directly using the commands abs and angle respectively. For example,
considering Example 3.10(a) the commands

z = 3 + 2i;
modz = abs(z)

return
modz = 3.6056

and the additional command
argz = angle(z)

returns

argz = 0.5880

confirming the answers obtained in the given solution. Using these commands check
the answers to Examples 3.10(b)—(d).

3.2.5 Exercises

Check your answers using MATLAB whenever possible.

1

Show in an Argand diagram the points representing 3 Obtain the roots of the equations below using

the following complex numbers:

@ 1+] (b) V3 —j
(©) =3+j (@ 1—-j3
e —1+j3 () —1—j3

Find z, + 25, 2, — 20, 22y, =325, 52; — 225,22, + 2,
where z, and z, are the complex numbers
z=1+j2,2,=3 —j.

complex numbers where necessary:
(a) ¥*+6x+13=0
b) *—x+2=0
) 4 +4x+5=0
dxX+2x—-3=0
@ x*—x*-6=0
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10

11

Express in the form x + jy:
(@ 632+ b T+p2—j3)
© (=1 +(=2+j3) (d) (=3+j2)@4+]j7
Express in the form x + jy:

(@ (4 —jo/d+j () S+j33E-j2
(© (I =p/a+53) (@ (—4-j3)2~-)

Express in the form x + jy where x and y are real
numbers:

@ $+32-)H-C+ih b 1 -j2y

> 8 1=
© 375 @17
) 31 +jy ® 3 -j27
1 13-4
®© 5°3 5+ ™55

Determine the complex conjugate of
@ 2+j7 (®) —3-j (© —j6 @ F-j3
Find the roots of the equations

(@ x*+2x+2=0 b) ¥*+8=0

Find z such that
zzF + 3(z —z%) =13 +j12

With z = 2 — j3, find

(@j bz (© lVz @ H*

Find the modulus and argument of each of the
complex numbers given in Question 1.

12

13

14

15

16

17

18

Find the complex numbers w, z which satisfy
the simultaneous equations

4z + 3w =23
z+ jw=6+j8

For z = x + jy (x and y real) satisfying

2z 2z _ 5
I+j j 2+
find x and y.

Given z = 2 — j2 is a root of
22— 922+ 20 -8 =0

find the remaining roots of the equation.

Find the real and imaginary parts of z when

1 2 1
L
3-j2

z 2433

Find z = z; + 2,23/(z, + z3) when z; = 2 + j3,
=3+ jdand z; = =5 +jl12.

Find the values of the real numbers x and y which
satisfy the equation

2+x—jy:1+j2
3x + jy

Find z; in the form x + jy, where x and y are real
numbers, given that

1 1 1
—_— = —

3 4o

where z;, =3 — jdand z, = 5 + j2.

3.2.6 Polar form of a complex number

Figure 3.3 (see Section 3.2.4) shows that the relationships between (x, y) and (r, 6) are

x =rcosf and

y = rsinf

Hence the complex number z = x + jy can be expressed in the form

z=rcosf + jrsinf = r(cosf + jsin@)

3.3)

This is called the polar form of the complex number. In engineering it is frequently

written as r £ 6, so that

z=r /L 0 =r(cosf + jsinf)
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Example 3.11

Solution
y
'5
Yo
O 12 X
(a)
y
: 0
4 ! r\
3 (0] X
(b)
y
4 o
0 X
(c)
Figure 3.5

Express the following complex numbers in polar form.

(@) 12 +j5 (b) -3+ 34 (c) —4—33

(a) A sketch of the Argand diagram locating the position of 12 + j5 is given in
Figure 3.5(a). Thus

[12 +j5| = V(144 + 25) = 13
arg(12 + j5) = tan"'3 = 0.395
Thus in polar form
12 + j5 = 13[c0s(0.395) + jsin(0.395)]

(b) A sketch of the Argand diagram locating the position of —3 + j4 is given in
Figure 3.5(b). Thus

|-3+j4|=VO +16)=5
arg(—3 +j4) = — tan" '3 = w — 0.9273
=2214
Thus in polar form
—3 + j4 = 5[cos(2.214) + jsin(2.214)]

(c) A sketch of the Argand diagram locating the position of —4 — j3 is given in
Figure 3.5(c). Thus

|-4 —3|=V16+9)=5
arg(—4 — j3) = —(r — tan"'3) = —(m — 0.643)
= —2.498
Thus in polar form
—4 — j3 = 5[cos (—2.498) + jsin(—2.498)]
= 5[cos(2.498) — jsin(2.498)]
using the results cos(—7) = cos ¢ and sin(—#) = —sin t.

Note: Rectangular to polar conversion can be done using a calculator and students are
encouraged to check the answers in this way.

Multiplication in polar form
Let

z, = ry(cos, + jsinf;) and z, = r,(cosh, + jsinb,)
then

2,2, = rry(cosB, + jsin6,)(cos B, + jsinb,)

= rr,[(cos6,cos B, — sinfh,sinf,) + j(sinf,cosh, + cosh,sinb,)]
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which, on using the trigonometric identities (2.24a, c), gives

212, = rir,[cos(0; + 0,) + jsin(0, + 6,)] 34
Hence

|22, = rir, = | 21| | | (3.52)
and

arg(z,2,) = 0, + 0, = arg z; + arg z, (3.5b)

When using these results, care must be taken to ensure that —7 < arg(z,z,) < 7.

Example 3.12  Ifz, = —12 + j5Sand z, = —4 + j3, determine, using (3.5a) and (3.5b), | 7,2, | and arg(z,z,).

Solution |2, = V(144 + 25) = \(169) = 13
arg(z) = T — tan” '3 = — 0.395 = 2.747
|z = V(16 +9) =5
arg(z,) = T — tan” '3 = 2.498
Thus from (3.4) and (3.5)
22| = |zl [2] = (13)(5) = 65
arg(z,z,) = argz, + argz, = 2.747 + 2.498
= 5.245 (or 300.51°)
However, this does not express arg(z,z,) within the defined range —7 < arg < 7. Thus

arg(z,z,) = —2mw + 5.245 = —1.038

Geometrical representation of multiplication by j

Y1 Since

(z) .-~ (@ o . . .
' z=r(cosO + jsin@) and j = 1(cos57 + jsin7)

it follows from (3.4) that

0 x iz = rlcos(6 + 4m) + jsin(0 + 37)]

Fi 6 Thus the effect of multiplying a complex number by j is to leave the modulus unaltered

lgure 3. b . 1 . . . . . . .
Relationship between ut to increase the argument by 57, as indicated in Figure 3.6. This property is of import-
zand jz. ance in the application of complex numbers to the theory of alternating current.
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Example 3.13

Division in polar form
Now

1 _ 1 cos@ — jsin@
cos@ + jsin@  cos6 + jsinf cosO — jsin6O

_ cosB — jsin@
cos’6 + sin’8

= cosf — jsinf, since cos?0 + sin’f = 1

Thus if

z; = ry(cosf, + jsinf,) and z, = r,(cos@, + jsinb,)

then
7 _ n(cos 6, + jsin6,)
z,  1,(cos6, + jsin6,)
= ﬁ(cos 0, + jsinf,)(cos 6, — jsinf,) (from above)
)
= ﬂ[(cos 0,cos 6, + sinf,sin6,) + j(sinf,cosf, — cosf,sinb,)]
)
or
4 A ..
— = —[cos(0, — 0,) + jsin(6, — 6,)] 3.6)
I

using the trigonometric identities (2.25b, d). Hence

Al = s = ﬂ 3.7
) s |Zz|
and
7
arg(z—l) =0,—0,=argz —argz, 3.8)
2

Again some adjustment may be necessary to ensure that —7 < arg(z,/z,) < 7.

For the following pairs of complex numbers obtain z,/z, and z,/z,.
(a) z; = 4(cosm/2 + jsinm/2), 1z, = 9(cosm/3 + jsinn/3)

(b) z, = cos3m/4 + jsin3n/4, z, = 2(cosm/8 + jsinm/8)
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Solution

Example 3.14

Solution

(@) |z,| =4, argz, =n2; |z =9, argz, =n/3
From (3.7)
Aot e |2]22
Zy 9 Z
From (3.8)
z T T n T T
arg| —|=——-—=— and arg|—|=——-—=——
Zy 2 3 Zy 3 2 6
Thus L = i(cosE + jsinzj
Zy 9 6 6
and 22— E(COSE — jsinzj
z; 4 6 6
(b) |z,| =1, argz, =3m/4; |z,| =2, argz, = /8
From (3.7)
i l and |[-2]=2
Zy 2 ]
From (3.8)
A RV 2 T 3r Sm
arg| — |=——-—=— and arg|—|=——-—=—+—
2 4 8 ] 8 4 8

Thus L = l(coss—ir + jsin 5—”)
V4) 2 8 8

and 2= 2[0085_7r - jsins—ﬂ)
8 8

Z

Find the modulus and argument of
U+ 2@ - 3y
G+ide-j’

1+ 2P14 - j3P

3+ 412 - P

_NA+HPNA6+9F _ 1 s
NO + 161 [N@4 + DP 25

2]

argz = 2arg(l +j2) + 3arg(4 —j3) —4arg3 + j4) — 3arg(2 —j)
= 2(1.107) + 3(—0.643) — 4(0.927) — 3(—0.461) = —2.035
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3.2.7

Example 3.15

Solution

Euler’s formula
In Section 2.7.4 we obtained the result
e* = cosh x + sinh x

which links the exponential and hyperbolic functions. A similar, but more important,
formula links the exponential and circular functions. It is

e’ = cosf + jsinf 3.9

This formula is known as Euler’s formula. The justification for this definition depends
on the following facts.
We know from the properties of the exponential function that

eifieifs — i0r+0)
When expressed in terms of Euler’s formula this becomes
(cosf, + jsinB,)(cosB, + jsin6,) = cos(f, + 0,) + jsin(@, + 6,)
which is just (3.4) withr, = r, = 1.
Similarly

i
© _ ei®-6y

ejez
becomes

6, + jsin6,
S8A TP~ cos(6, — 6,) + jsin(6; - 6,)
cos6, + jsinb,

which is just (3.6) with r, = r, = 1.
Euler’s formula enables us to write down the polar form of the complex number z
very concisely:

z=r(cosf + jsinf) = re’’ =r L 0 (3.10)

This is known as the exponential form of the complex number z.

Express the following complex numbers in exponential form:

(a 2+j3 (b) =2+

(a) A sketch of the Argand diagram showing the position of 2 + j3 is given in
Figure 3.7(a).

2+ 3| =2 + 3% =13
arg(2 + j3) = tan"'(3/2) = 0.9828
Thus 2 + j3 = V13

(b) A sketch of the Argand diagram showing the position of —2 + j is given in
Figure 3.7(b).
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Figure 3.7 b (2,3) y
Argand diagrams for
Example 3.15.

=2.1)

. (=2+)
arg 2 +j3) \arg

(a) (b)
-2 +j| =15
arg(—2 + j) = — tan"'(1/2) = 2.6779
Thus —2 + j = V5e/677,

Example 3.16  Express in cartesian form the complex number &>,

Solution e*"™3 = %™ = e*(cos 7/3 + j sin 7/3)
Now e = 7.3891, cos /3 = 0.5 and sin /3 = 0.8660, so that
e?"i™ = 3.6945 + j6.3991

Having determined the modulus r and argument theta of a complex number, its
polar form is given in MATLAB by

r* (cos(theta) + i*sin(theta))
and its exponential form by

r*exp (i*theta)

3.2.8 Exercises

Check your answers using MATLAB whenever possible.

19 Ifz; =1+ jandz, = \3 + j, determine |z,2,|, 5 y .. (%
|2/2,], arg(z,2,) and arg(z,/2,). by a=27%3) TG

20  For the following pairs of numbers obtain z,2,, 5= 5|:cos(5—”) + jsin(s—n)}
2,/2,, and z,/7;: 6 6

21  Obtain the modulus and argument of z where
(@ 3w\ .. (3=m
z, = 2| cos| — | + jsin| — L (2+j)3(—3+j4)2
12- -y’
z,= 8|:COS(£) + jSin(EH and write z in the form x + jy.
6 6
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22

23

24

Express the following complex numbers in
exponential form:

(a) 3 +j4 ®) —1+j\3

Express the following complex numbers in
cartesian form:

(a) e3+jn/4 (b) efl+j7r/3

Express in polar form the complex numbers

(@) j (b) 1
() —1 @ 1—j
(e) V3 —j\3 ) —2+j

25

26

27

(&) —3-j2 () 7—j5
O C-p2+j G (=2+j77
Express z = (2 — j)(3 + j2)/(3 — j4) in the form
x + jy and also in polar form.
Given z, = e and z, = e ¥, find
(a) the arguments of z,z3 and z3/z,
(b) the real and imaginary parts of z3 + jz,

Given z; = 2e"” and z, = 4e %™, find the modulus
and argument of

(@ 2325 () 232y (o) Z3/2)

3.2.9 Relationship between circular and hyperbolic functions

Euler’s formula provides the theoretical link between circular and hyperbolic functions.

Since

e’ =cosf + jsind and e’ = cosh — jsin@

we deduce that

i0 -i6
S SCRl
cosf = ——
2
and
i0 -i6
. e] —e J
sin@ = -
2j

(3.11a)

(3.11b)

Earlier (see Section 2.7) we defined the hyperbolic functions by

coshx =
2

and

e +e”

(3.12a)

(3.12b)
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Example 3.17

Comparing (3.12a, b) with (3.11a, b), we have

) e + e ¥
cosh jx = — = Ccosx

L elt—erir
sinh jx = — = jsinx

so that

tanh jx = jtanx

Also,
x —j2x —x X
) el +e e +e
cos jx = = = cosh x
2 2
L. eioeTt et
sin jx = - = —— = jsinhx
2j 2j
so that

tan jx = j tanh x

(3.13a)

(3.13b)

(3.13¢)

(3.14a)

(3.14b)

(3.14¢)

These relationships provide the justification for Osborn’s rule used previously (see
Section 2.7.4) for obtaining hyperbolic function identities from those satisfied by circu-
lar functions, since whenever a product of two sines occurs, j2 will also occur.

Using these results we can evaluate functions such as sinz, cos z, tanz, sinh z, cosh z

and tanh z. For example, to evaluate
cos 7 = cos(x + jy)
we use the identity
cos(A + B) = cos A cos B — sinA sin B
and obtain
COS Z = COS X COS jy — sin x sin jy
Using results (3.14a, b), this gives

cos 7z = cos xcoshy — jsinxsinhy

Find the values of
(a) sin[+7(1 +j)]  (b) sinh(3 + j4)
(c) tan(§ —j3) (d) zsuchthatcosz =2

(e) zsuch that tanh z = 2
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Solution (a) We may use the identity
sin(A + B) = sin A cos B + cos A sin B
and obtain
sin(47 + j47) = sin $7wcos j47 + cos 17 sin j37

Here sin 47 and cos §7 are evaluated as usual (= /%), while we make use of results
(3.14a, b) to obtain

cosj+m =coshim and sinjim = jsinh iz
giving
sin[+7 (1 + j)]= sin +7mcosh +7 + j cos 17sinh 17
= (0.7071)(1.3246) + j(0.7071)(0.8687)
= 0.9366 + j0.6142
(b) Using the identity
sinh(A + B) = sinh A cosh B + cosh A sinh B
we obtain
sinh(3 + j4) = sinh 3 cosh j4 + cosh 3 sinh j4
which, on using results (3.13a, b), gives
sinh(3 + j4) = sinh 3 cos 4 + j cosh 3 sin 4
(10.0179)(—0.6536) + j(10.0677)(—0.7568)
—6.548 — j7.619

(c) Using the identity

tan A — tan B

tan(A - B)= ——
1+ tanAtan B
we obtain

tan 17 — tan j3
tan(37 — j3) = 4—1.
1 + tan 47 tan j3

which, on using result (3.14¢) and tan 47 = 1, gives

I - jtanh3 (I - jtanh3)?
1+ jtanh3 1 + tanh?3

tan(47 — j3)

_ 1 —tanh?3 _ . 2tanh3
" 1+ tanh?3 J1 + tanh?3
1 . 2sinh 3cosh 3
cosh?3 + sinh?3 . cosh?3 + sinh?3
1 .sinh 6

= +j = 0.005 — j1.000
cosh 6 cosh 6
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(d) Writing z = x + jy, we have
2 = cos(x + jy)
Expanding the right-hand side gives
2 = cos x cos jy — sin x sin jy
= cos x cosh y — sin x (j sinh y)
2 =cosxcoshy — jsinxsinhy
Equating real and imaginary parts of each side of this equation gives
2 = cos x cosh y
and
0 =sinxsinhy

The latter equation implies either sinx = 0 or y = 0. If y = 0 then the first equation
implies 2 = cos x, so clearly that is not a solution since x is a real number. The alterna-
tive, sin x = 0, implies x = 0, £m, +27x, £37, ..., and hence

2 = cos(dnm)coshy, n=20,1,2,...
This gives
2 = cosnmcoshy
= (—1)"coshy

But cosh y = 1, so n must be an even number. Thus the values of z such that cos z =
2 are

z=22nmtjcosh™ 2, n=0,1,2,...
= 007 +(1.3170)

(e) Writing z = x + jy we obtain
tanh(x + jy) = 2
which implies
sinh(x + jy) = 2 cosh(x + jy)
Expanding both sides we have
sinh x cosh jy + cosh x sinh jy = 2 cosh x cosh jy + 2 sinh x sinh jy
or
sinh x cos y + jcosh x siny = 2 cosh x cos y + 2j sinh x sin y
Equating real and imaginary parts we obtain
sinh x cos y = 2 cosh x cos y

coshxsiny = 2sinhxsiny
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Since sinh x = 2 cosh x for real values of x, cos y = 0 so that
y=2n+ r/2forn=0,+£l1,42, ...

This implies that sin y = 0, so that tanh z = 1. Thus

z=tanh '3 + 27, n=0,+1,£2, ...
=3In3+j2lr  n=0+1,42, ...

using the identity 92.440.

3.2.10 Logarithm of a complex number
Consider the equation
z=¢e"
Writing z = x + jyand w = u + jv, we have
x +jy =tV =elel
= e"(cos v + jsinv), by Euler’s formula
Equating real and imaginary parts,
x=-¢e“cosv and y=-e"sinvy
Squaring both these equations and adding gives
x> + y* = e?(cos’v + sin’*v) = e**
so that
u=3Inx*+y’) =In|z|
Dividing the two equations,

tanvzz

X
From this and x = e“ cos v

v=argz+ 2nm, n=0,=x1,42,...
Hence

v=Inl|z|+jargz + j2nw, n=0,%1,42,...

We select just one of these solutions to define for us the logarithm of the complex
number z, writing

Inz=In|z| +jargz (3.15)

This is sometimes called its principal value.
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Example 3.18  Evaluate In(—3 + j4) in the form x + jy.

28

29

30

Solution |-3+j4|=VO +16)=5
arg(—3 + j4) = — tan '3 = 2.214
Thus from (3.15)
In(—3 + j4) = In 5 + j2.214 = 1.609 + j2.214

| In MATLAB functions of a complex variable can be evaluated as easily as functions
of a real variable. For example, in relation to Examples 3.17 (a) and (b), entering

sin((pi/4)* (1 + 1)) returns the answer 0.9366 + 0.61421
whilst entering
sinh (3 + 41i) returns the answer —-6.5481 - 7.61921

confirming the answers obtained in the given solution. Similarly, considering
Example 3.18, entering

log (-3 + 4i) returns the answer 1.6094 + 2.21431

confirming the answer obtained in the solution.

3.2.11 Exercises

Check your answers using MATLAB whenever possible.

Using the exponential forms of cos 6 and 31 Show that

s1.nG given in (.3.11?1,.b), prove the following (@ In(5 +j12) = In 13 + j1.176

trigonometric identities:

: . . (b) In(—3 — j3V3) = —jF

(a) sin(a + B) = sina cosf3 + cosa sin3

(b) sinf =2sin6 — Lsin30 32  Writing tanl}(u + jv) =x + jy, with x, y, u and v
real, determine x and y in terms of u and v.
Hence evaluate tanh(2 + j%n’) in the form

Express in the form x + jy X+ jy.
. i . .l
(@) sin(e7 +J) (b) cos(J%) 33 In a certain cable of length [ the current I, at the
(©) sinh[Z(1 + )] (d) cosh(j%) sending end when it is raised to a potential V,,
) and the other end is earthed is given by
Solve z = x + jy when I, = % tanh P/

0

inz=2 = i3
(@) sinz (®) cosz =3 Calculate the value of 1, when V,, = 100,

(c) sinz=3 (d) coshz = =2 Z, = 500 + j400,/ = 10 and P = 0.1 + jO.15.
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Powers of complex numbers

3.3.1

Example 3.19

Solution

In earlier sections we have discussed the extensions of ordinary arithmetic, including
+, —, X, &+, to complex numbers. We now extend the arithmetical operations to include
the operation of powers.

De Moivre’s theorem

From (3.10) a complex number z may be expressed in terms of its modulus r and
argument 6 in the exponential form

7= rel

Using the rules of indices and the property (2.33a) of the exponential function, we have,
for any n,

Zn — rn(ejﬁ)n — rnej(nO)

so that
z" = r"(cos nf + j sin nf) (3.16)

This result is known as de Moivre’s theorem.
Express 1 — j in the form r(cos 6 + j sin@) and hence evaluate (1 — j)'.

From Example 3.7(b)
1 —j|=V2 and arg(l —j)=—1irn
so that
1 —j = \2[cos(—im) + jsin(—17)]
= \2(costm — jsin ir)
Then
(1 =)™ = (2)*(cos g7 — jsin 57)"
which, on using de Moivre’s theorem (3.16), gives
(1 —j)"? = 2%[cos(12 X +) — jsin(12 X +7)]
= 2%cos 3w — j sin 37)
=2%—1—j0)
—64

Most commonly, we use de Moivre’s theorem to find the roots of complex numbers like
Vz and *z. More generally, we want to find 7' the nth root, where n is a natural number.
Setting w = 7', we see that z = w", and by (3.16),
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Example 3.20

Solution

w" = R"(cos n¢ + jsin n¢g), where |w| = Randargw = ¢
z = r(cosf + j sin6), where |z| = rand argz = 0
Comparing real and imaginary parts in the equality z = w", we deduce that
rcosf = R"cos n¢
and
rsind = R"sin n¢

Squaring and adding these two equations gives r* = R*"; that is, R = r"". Substituting
this value into the equations gives

cosf = cos n¢
and
sin® = sin n¢

This pair of simultaneous equations has an infinite number of solutions because of the
2r-periodicity of the sine and cosine functions. Thus

ng = 0 + 2wk, where k is an integer
and

2
0= 2 Gherek=0,1,-1,2, 2,3, —3,...
n n

Substituting these values for R and ¢ into the formula for w gives

SUn — pln |:cos (Q + %) + jsin (g + ﬁ)] 3.17)
n n n n

where k is an integer. This expression yields exactly n different roots, corresponding
tok=0,1,2,...,n— 1. The value for k = n is the same as that for k = 0, the value for
k = n + 1 is the same as that for k = 1, and so on. The n values of """ are equally spaced
around a circle of radius 7" whose centre is the origin of the Argand diagram. Also,
the arguments increase in arithmetic progression, so that joining the roots on the circle
creates a regular polygon inscribed in the latter.

Equation (3.17) may be written alternatively in the exponential form

gl = plinedOm2ein g —0,1,2,...,n— 1 (3.18)

Given z = —7 + j3, evaluate
(a) Z1/2 (b) Z1/3

and display the roots on an Argand diagram.

We first express z in polar form.
Since r = |z| =G+ =27 and § = arg(z) = 7 — tan"'l = 37, we have

— n—1/2 3 i 3
z=2""(cos s + jsin 5 7)
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Figure 3.8

Roots on an Argand
diagram for
Example 3.20.

4
A k=0) Pl N
B s (k=0)
3 k=107 2. \
m §7T | 3N T \I
T % >
(0] 2 \O|2# 1
; /)\ 377\' 3 /
/
Circle V
k=D ralgicu: 27%\\‘ -7
(k=2)

(@ (b)

(a) From (3.17)

2 2
7112 = f1/2 cos(g + ikj + jsin(g + ij , k=0,1
2 2 2 2

=2 "[cos(Fm + mk) + jsinG 7 + k)],
Thus we have two square roots:
72 =2""(cos3m + jsinim)  (for k = 0)
and

72 =2""(cos¥m + jsingmw) (fork=1)

as shown in Figure 3.8(a). These can be evaluated numerically, giving respectively (to
4dp) z = 0.3218 + j0.7769 and z = —0.3218 — j0.7769.

(b) From (3.17)

Vs _ 13 0 2rnk .. (0 27mk
77 = r'>| cos §+T + jsin §+T s k=0,1,2

=2 "[cos(Gm + 37K) + jsinGGw + 37K)],  k=0,1,2
Thus we obtain three cube roots:
7% = 2""(costn+ jsingm) (for k = 0)
73 = 2""(cos pm+ jsiniym) (fork = 1)
and
73 =2""(cos 3+ jsinjgm) (fork = 2)

as shown in Figure 3.8(b). Note that the three roots are equally spaced around a circle
of radius 2~"® with centre at the origin.

Formula (3.17) can easily be extended to deal with the general rational power z” of z.

m
Let p = —, where n is a natural number and m is an integer; then
n
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Example 3.21

Figure 3.9

Solution

Roots on an Argand

diagram for

Example 3.21.

Example 3.22

Solution

Evaluate (=7 + J%)_Z/3 and display the roots on an Argand diagram.

Zp — (len)m

= {r“”[cos(e
= pmin {cos (m_@ +

= r’[cos(pl + 2mkp) + jsin(pb + 2mkp)],

1

27rk) . (9 2k
—+— |+ jsin| — + —
n n n n
anm] .. (me
+ jsin| — +
n n n

From Example 3.17, we can write

giving
7723 = 23 {cos [—& -
3

= 2"%[cos(—37 — 37k) + jsin(—37m — 37k)],

Thus we obtain three values:

and

2 = 2"[eos(—370) + jsin(—770)]

1 1 ~-1/2 3 fein 3
—5 + j3 =27/%(cos 37 + jsin§7)

4nk)
|+
3

7P =2"(cos g + jsing )

(for k

772 =2"(cos2m + jsin27m) (for k = 2)

as shown in Figure 3.9.

Circle radius

Solve the quadratic equation

Z+@2j =3+ G -)=0

Using formula (1.5)

P O VI2j = 3)* — 45 — )]

2

ﬂ} , k=0,1,2,....,(n-1)

2rkm

n

) ( 20 Amk
jsin| -5 - ==

3

(for k = 0)

=1)

k=0,1,2,...,(n — 1)
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Figure 3.10
The complex
number —15 — j8.

3.3.2

Y
15 0 .
i / x
8 r N 0
that is,
- = _(2_] - 3) iz\/(_ls - J8) (3.19)

Now we need to determine (—15 — j8)"? so first we express it in polar form. Since
=15 = j8| = VI(15)* + (8] = 17
and from Figure 3.10
arg(—15 — j8) = —(x — tan"' %)
= —2.6516
we have
—15 — j8 = 17[cos(2.6516) — jsin(2.6516)]
From (3.17)

(=15 - 82 = (17)1/2[cos(

2.6516 27tkj . (2.6516 ZﬂkH
+ — | — jsin + —
2
= (17)"*[cos(1.3258 + mk) — jsin(1.3258 + 7k)], k=0, 1

Thus we have the two square roots

(=15 — j&)"* = (17)"*[cos(1.3258) — jsin(1.3258)] = 1 — j4 (for k = 0)
(the reader should verify that (1 — j4)*> = —15 — j8)
and

(—15 — j8)"* = (17)"*[cos(4.4674) — jsin(4.4674)] = —1 + j4 (fork = 1)
Substituting back in (3.19) gives the roots of the quadratic as

z=2—33 and 1 +j

Powers of trigonometric functions and multiple angles

Euler’s formula may be used to express sin"d and cos™ in terms of sines and cosines of
multiple angles. If z = cos# + jsin6 then

z" = cos nf + j sin nf
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Example 3.23

Solution

and
z " = cosnb — jsin nf

so that
7"+ 77" =2cosnb (3.20a)
7" — z " = 2jsinnb (3.20b)

Using these results, cos"@ and sin"@ can be expressed in terms of sines and cosines of
multiple angles, as illustrated in Example 3.23.

Expand in terms of sines and cosines of multiple angles

(a) cos’d (b) sin®0

(a) Using (3.20a) withn = 1,

1’ 1 1
(20050)5=(z+—j =25+523+1OZ+—0+%+—

z z oz z3

so that

1 1 1
32c0s°0 = (25 + —Sj + 5(23 + —3j + 10(2 + —j
z zZ zZ

which, on using (3.20a) with n = 5, 3 and 1, gives
cos’f = 35(2 cos 56 + 10 cos 30 + 20 cos 0) = %(cos 560 + 5 cos 360 + 10 cos6)
(b) Using (3.20b) withn = 1,

6
(2jsin0)6=(z—lj =z6—6z4+1522—20-i-g—%+i6
z z z z

which, on noting that j = —1, gives

1 1 1
—64sin°0 = (26 + _6) - 6(24 + —4) + 15(22 + —2) -20
4 Z 4

Using (3.20a) with n = 6, 4 and 2 then gives
sin®g = —(%4(2 cos 60 — 12 cos 40 + 30 cos 26 — 20)
= +5(10 — 15 cos 20 + 6 cos 40 — cos 66)

Conversely, de Moivre’s theorem may be used to expand cos nf and sinnf, where 7 is
a positive integer, as polynomials in cos 6 and sin §. From the theorem

cos nf + jsin nf = (cosh + j sinf)"
we obtain, writing s = sinf and ¢ = cos 6 for convenience,
o n(n —1)

cosnf + jsinnh = (c + js)'=c" + jnc" s + ] TC"_ZSZ ot js"
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Example 3.24

Solution

Equating real and imaginary parts yields

n(n—1) 25 4 nn—1)(n—-2)n-23) c
2! 4!

cosnf = c" — nodgt L

and

nn—1)n-2)
3 ¢

sinnf = nc" s — =33 L
Using the trigonometric identity cos’) = 1 — sin®9 (so that ¢> = 1 — s?), we see that

(a) cos nf can be expanded in terms of (cos#)" for any n or in terms of (sinf)" if
n is even;

(b) sin nf can be expanded in terms of (sin6)" if n is odd.

Expand cos 46 as a polynomial in cos 6.

By de Moivre’s theorem,
(cos 40 + j sin 40) = (cos O + j sinB)* = (¢ + js)*
= '+ j4cs + 6% s + Phest + st
= c* + jac’s — 6¢%5? — jdes® + st
Equating real parts,
cos 40 = ¢* — 6¢%* + st
which on using s* = 1 — ¢? gives
cos40 =c* —6c((1 —c)+ (1 —c??*=8c*"— 8+ 1
Thus
cos 40 = 8 cos*d — 8 cos’ + 1

Note that by equating imaginary parts we could have obtained a polynomial expansion
for sin 46.

In MATLAB, raising to a power is obtained using the standard operator ~. For
example, considering Example 3.19, entering

(1 — 1i)~12returns the answer —64

as determined in the given solution. Considering Example 3.20(a), entering the
commands

z = -1/2 + (1/2)*1i; zl1 = z"(1/2)
returns

zl = 0.3218 + 0.77691
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34

55

36

37

which is the root corresponding to kK = 0. From knowledge that the two roots are
equally spaced around a circle, the second root may be easily written down.
In Example 3.22 the solution may be obtained symbolically using the solve

command. Entering

syms z
solve(z"2 +

returns the answer

2 = 3w
1 4 4

(2%d = ) ¥z +

(5 - 1))

which checks with the answer given in the solution.
Expanding in terms of sines and cosines of multiple angles may be undertaken
symbolically using the expand command. For example, considering Example 3.24

the commands

syms theta
expand(cos (4*theta))

return the answer

8*cos (theta) "4 - 8*cos(theta)”™2 + 1

which checks with the answer obtained in the given solution.

3.3.3 Exercises

Check your answer using MATLAB whenever possible.

38

Use de Moivre’s theorem to calculate the third and
fourth powers of the complex numbers

@ 1+ ] (b) V3 —j (c) —3+j4
1-73 (@ —1+j3 ¢ —-1-73

(The moduli and arguments of these numbers were
found in Exercises 3.2.5, Question 11.)

59

Expand in terms of multiple angles

(a) cos*d (b) sin’9

Use the method of Section 3.3.2 to prove the 40
following results:

(a) sin 30 = 3 cos’d sinf — sin’6

(b) cos 80 = 128 cos®d — 256 cos®d + 160 cos’d 41

— 32cos’0 + 1
5tan @ — 10 tan’@ + tan’@
1 -10tan’@ + 5tan*0

(c) tan560 =

Find the three values of (8 + j8)"” and show them
on an Argand diagram.

Find the following complex numbers in their polar
forms:

@ (3= ) (8"
© G=j3* @ D"
© @+@" ) -3 "

Obtain the four solutions of the equation
#=3-j4

giving your answers to three decimal places.

Solve the quadratic equation

Z—(3+j5)z+ij8—-5=0

Find the values of 7', where z = cos 27 + j sin 2.
Generalize this to an expression for 1"”. Hence solve

the equations
z-27 . .

(a) | ——=| =1 (Hint: First show that there are

z+2 only four roots)

b) z—3¥—-2=0
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3.4

34.1

Example 3.25

Solution
y
x=4
1 1 1 1 1 1
o| 4| x
(a) Linex=4
y
1 D
(1,1
1 o
O 1 X

(b) Half-liney=ux, x> 1

Figure 3.11

Loci in the complex plane

A locus (plural loci) is the set of points that have a specified property. For example, a
circle is the locus of the points in a plane that are a fixed distance, its radius, from a
fixed point, its centre. The property may be specified in words or algebraically. Loci
occur frequently in engineering contexts, from the design of safety guards around
moving machinery to the design of aircraft wing sections. The Argand diagram
representation of complex numbers as points on a plane often makes it possible to
represent complicated loci very concisely in terms of a complex variable, and this
simplifies the engineering analysis. This occurs in a wide range of engineering prob-
lems, from the water percolation through dams to the design of microelectronic devices.

Straight lines

There are many ways in which straight lines may be represented using complex numbers.
We will illustrate these with a number of examples.

Describe the locus of z given by

(a) Re(z) =4 (b) arg(z — 1 —j) = n/4
z—j2 .
(©) P ‘Z 1 (d) Im((1 —j2)z) =3

(a) Here z = 4 + jy for any real y, so that the locus is the vertical straight line with
equation x = 4 illustrated in Figure 3.11(a).

(b) Herez =1+ j + r(cos /4 + j sin 7/4) for any positive (> 0) real number 7, so that
the locus is a half-line making an angle 7/4 with the positive x direction with the end
point (1, 1) excluded (since arg 0 is not defined). Algebraically we can write it as y = x,
x > 1, and it is illustrated in Figure 3.11(b).

(c) The equation, in this case, may be written
|z - 2] =]z -1

Recalling the definition of modulus, we can rewrite this as
VI + (p = 271 =\ = 1) + 7]

Squaring both sides and multiplying out, we obtain
XHy —dy+4=x"—2x+1+y?

which simplifies to

y=3x+

=
EN S

the equation of a straight line.
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—1 (0] 1 X

(¢) Liney= %x +%

y

2
-2/ 1

1 1 1
/—1?}1 2 x

(d) Liney=2x+3

Figure 3.11
continued

3.4.2

Figure 3.12
The circle |z - z,| =R.

Example 3.26

Solution

Alternatively, we can interpret |z — j2| as the distance on the Argand diagram from
the point 0 + j2 to the point z, and |z — 1] as the distance from the point 1 + jO to the
point z, so that

lz—j2|=lz =1

is the locus of points that are equidistant from the two fixed points (0, 2) and (1, 0), as
shown in Figure 3.11(c).

(d) Writing z = x + jy,
(I =12)z=0=2)x +jy) =x+2y +jly — 20

so that Im((1 — j2)z) = 3, implies y — 2x = 3.
Thus Im((1 — j2)z) = 3 describes the straight line

y=2x+3
illustrated in Figure 3.11(d).

Circles

The simplest representation of a circle on the Argand diagram makes use of the fact
that |z — z,]| is the distance between the point z = x + jy and the point z, = a + jb on
the diagram. Thus a circle of radius R and centre (a, b), illustrated in Figure 3.12, may
be written

|lz—z|=R

We can also write this as z — z, = Re¥, where ¢ is a parameter such that

—n<tsnm

P(z=x+jy)

Y\/ x
Find the cartesian equation of the circle

lz—@+3)=2

Now,

=2+ =x-2+jy—-3
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Example 3.27

Solution

so that
2= @+33)] =k =27 + (v = 3)7]
and hence on the circle
lz—Q2+j3)]=2
we have
Mx =22+ (y—3°1=2
which implies
(=27 +(y-3=4

indicating that the circle has centre (2, 3) and radius 2.
This may be written in the standard form

X+y —4x—6y+9=0

This is not the only method of representing a circle, as is shown in the following two
examples.

Find the cartesian equation of the curve whose equation on the Argand diagram is

z-]

=) -\
z—1-3j2 v

By expressing it in the form |z — j| = \2 |z — (1 + j2)| we can interpret this equation
as ‘the distance between z and j is V2 times the distance between z and (1 + j2)’, so this
is different from Example 3.25(d).

Putting z = x + jy into the equation gives

b+ iy = DI =26 = 1) +j(y = 2)]
Thus
Vi + (v = D1 = V2)[e = 1P + (v = 2)°]
which, on squaring both sides, implies
A =20 D+ (v - 2)]
Multiplying out the brackets and collecting terms we obtain
X+ —dx—6y+9=0 or (x—2P7+(y—37=4

which, from (1.14), is the equation of the circle of centre (2, 3), and radius 2.
This is a special case of a general result. If z, and z, are fixed complex numbers and

z—z . .
L| = kis a circle,

k is a positive real number, then the locus of z which satisfies
zZ = Zz

known as the circle of Apollonius, unless k = 1. When k = 1, the locus is a straight line,
as we saw in Example 3.25(d).
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Example 3.28

Solution

3.4.3

Example 3.29

Solution

Figure 3.13

The ellipse of
Example 3.29.

Find the locus of z in the Argand diagram such that
Re[(z = iz + D] =0

Setting z = x + jy, as usual, we obtain

z=j_x+jo =D _ [x+i0y = DI+ 1 = jy]
z4+1  (x+1D+jy (x +1)2 + y?

Hence Re[(z — j)/(z + 1)] = 0 implies x(x + 1) + y(y — 1) = 0.
Rearranging this, we have
Xy +x—y=0
and
(cHdP+( =1

Hence the locus of z on the Argand diagram is a circle of centre (—%, %) and radius
\2/2.

More general loci

In general we approach the problem of finding the locus of z on the Argand diagram
using a mixture of elementary pure geometry and algebraic manipulation of expressions
involving z = x + jy. We illustrate this in Example 3.29.

Find the cartesian equation of the locus of z given by

|z+l|+|z—l|=4

The defining equation here may be interpreted as the sum of the distances of the point z
from the points 1 and —1 is a constant (= 4). By elementary considerations (Figure 3.13)
we can see that the locus passes through (2, 0), (0, \/3), (=2, 0) and (0, —\/3). Results
from classical geometry would identify the locus as an ellipse with foci at (1, 0) and
(=1, 0), using the ‘string property’ (see Example 1.40). Using algebraic methods,
however, we set z = x + jy into the equation, giving

VG D+ 37 = 1P 47 = 4

\3
y — —
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42

43

44

45

Rewriting this equation as

WG+ 17+ 37 = 4 =[G = 17+ 7
and squaring both sides gives

x+ D+ =16 — 8[(x — D> + ¥’ ] + (x — 1) + y?
This simplifies to give

4 —x=2/[(x — 1*+y%

so that squaring both sides again gives

16 — 8x + x> =4[x> — 2x + 1 +y?]

which reduces to

oYy
4 3

in the standard form of an ellipse.

3.4.4 Exercises
Letz = 8 + jand w = 4 + j4. Calculate the 46 Express as simply as possible the following loci in
distance on the Argand diagram from z to w and terms of a complex variable:
from z to —w. (@) y=3x—2 (b) x* +y*+4x=0
Describe the locus of z when (© ¥*+y’ +2x—4y—4=0 (d) > —y* =1
(@) Rez=5 (b |[z—1|=3 47  Find the locus of the point z in the Argand diagram
which satisfies the equation
=3 d —2)=rl/4
© (d) arg(z = 2) @ |z—1]=2 ®) 2z -1]=3
© lz=2-j3]=4 (@ arg@) =0
The circle x* + y* + 4x = 0 and the straight line _1
y = 3x + 2 are taken to lie on the Argand diagram. (e) |Z — 4| = 3|z +1 | (f) arg [Z_j =iz
Describe the circle and the straight line in terms =1
of z.
48  Find the cartesian equation of the circle given by
Identify and sketch the loci on the complex plane 2+ 2
given by -1
(a) Re(z * JJ 1 (b) Re[z * J j =2 and give two other representations of the circle in
7=l 2= terms of z.
(©) Z_ﬂ =3 (d) tan arg( j V3 49  Given that the argument of (z — 1)/(z + 1) is%n,
=] show that the locus of z in the Argand diagram is
. art of a circle of centre (0, 1) and radius \2.
(©) Im(2) =2 @ |z+jl+]z—1]=2 P ©. 1)
(@ |Z +ij | —_ |Z 1 | — % (h) arg(z + 2) = + 50 Find the cartesian equation of the locus of the point

(i) argRz —3) = —%” () lz—j2|=1

z = x + jy that moves in the Argand diagram such
that [(z + D/(z — 2)| = 2.
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Functions of a complex variable

Example 3.30

Solution

Example 3.31

Previously (see Section 2.2.1) the basic idea of a function was described. Essentially it
involves two sets X and Y and a rule that assigns to every element x in the set X precisely
one element y in the set Y. There, we were concerned with real functions so that x and
y were real numbers. When the independent variable is a complex number z = x + jy
then, in general, a function f(z) of z will have values which are complex numbers.
Conventionally w = u + jv is used to denote the dependent variable of a function of a
complex variable, thus

w=u+jv=[f(z), where z=ux+jy

Express u and v in terms of x and y where w = u + jv, z = x + jy, w = f(z) and

@ f) =2 (b f)= —3, z=—1
z+1

(a) When w = 7%, we have u + jv = (x + jy)>. This may be rewritten as
u+jv=x>—y+j2xy
so that comparing real and imaginary parts on either side of this equation we have

u=x>—y and v=2xy

(b) Whenw = Z_J,wehave
z+1
uﬂ.v:X+J(y—}):[X+J(y—1)][(X+1)—Jy]
(x + 1)+ jy (x+1)2+y?

Hence comparing real and imaginary parts we have

XD+ Y- LG De =D -y

and

(x+1)?%+y? (x+1)?%+y?
These may be written as
I -
_ XAy rx-y o y-x—l
X2+ +2x+1 X+ +2x+1

The graphical representation of functions of a complex variable requires two planes,
one for the independent variable z = x + jy and another for the dependent variable
w = u + jv. Thus the function w = f(z) can be regarded as a mapping of points on the
z plane to points on the w plane. Under such a mapping a region A on the z plane is
transformed into the region A" on the w plane.

Find the image on the w plane of the strip between x = 1 and x = 2 on the z plane under
the mapping defined by

z+2

w =
z
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Solution

Figure 3.14
Transformation of the
stripl <Rez <2
onto the w plane.

The easiest approach to this problem is first to find x in terms of u and v. So solving

w = z+2 for z we have

and

P SR (V2 B
o i =1 402

Equating real parts then gives
o 2m-1
(u—1)% +02
The line x = 1 maps into
| = 2u—12
u? = 2u+1+0v?
which simplifies to give the circle on the w plane
w—27+v=1
The line x = 2 maps into
which simplifies to give the circle on the w plane
=37 +v=3

Thus the strip between x = 1 and x = 2 maps into that portion of the w plane between
these two circles, as illustrated in Figure 3.14. The point z = % maps to w = % con-
firming that the shaded areas correspond.

As will be shown in the companion text Advanced Modern Engineering Mathematics,
these properties are used to solve steady state potential problems in two dimensions
(see, for example, Engineering Application 4.7 in this companion text).

y v

z plane w plane
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3.5.1 Exercises

51 Find u and v in terms of x and y where w = f(z),
z=x+jy,w=u+jvand

@fD=0-)z O D=1
1
© fl)=z+>

52  Find the values of the complex numbers a
and b such that the function w = az + b maps
the pointz = 1 + j tow = j and the point z = —1
to the point w = 1 +j.

53  Show that the line y = 1 on the z plane is

transformed into the line # = 1 on the w plane
by the function w = (z + j)/(z — j).

54  Show that the function w = (jz — 1)/(z — 1) maps
the line y = x on the z plane onto the circle
w—12+@-17=1

on the w plane.

55

56

Show that the line x = 1 on the z plane is
transformed into the circle

WHV—u=0
on the w plane by the function

w=(z— D/z+ 1)

By writing z = x + jy and w = u + jv, show that the
liney = % on the z plane is transformed into the line
v = u on the w plane by the function

w=¢€

Find the image of the line x = 0 under the same
function.

ERON Ao CEIE P T I L i alternating currents in

electrical networks

When an alternating current i = Isinw? (w is a constant and ¢ is the time) flows in a
circuit the corresponding voltage depends on w and on the resistance, capacitance and
inductance of the circuit. (Note that the frequency of the current is w/27.) For sim-
plicity we shall separate these three elements and consider their effects individually.
For a resistor of resistance R the corresponding voltage is v = IR sin wt. This voltage
is ‘in phase’ with the current. It is zero at the same times as i and achieves its maxima
at the same times as 7, as shown in Figure 3.15. For a capacitor of capacitance C
the corresponding voltage is v = (I/wC)sin(wt — 3 7), as shown in Figure 3.16. Here
the voltage ‘lags’ behind the current by a phase of +7. For an inductor of inductance

Figure 3.15

2
o,

- i
, 14

3 t
w

i,vh

A resistor of
resistance R. R

o1~ O
Figure 3.16 i, v
A capacitor of C
capacitance C.

—]F— o 7
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Figure 3.17
An inductor of
inductance L.

L C R
o—NVV\—I H:'_C’
Figure 3.18

A linear LCR circuit.

L the corresponding voltage is v = wLl sin(wt + 37), as shown in Figure 3.17. Here
the voltage ‘leads’ the current by a phase of 7.

Combining these results to find v in the case of a general network is easily done
using the properties of complex numbers. Remembering that sinf® = Im(e’), we can
summarize the results as

Im(/Re i®7) for a resistor

I ‘
v =<Im| ——el@=72 | for a capacitor
oC

Im(wLIe i@y for an inductor

; 1 .o . s . .
2 = cos+m + jsiny7 = j and e ¥* = —j, so we may rewrite these as

Now e
v = Im(IZe’")
where

R for a resistor
z=1-1 fora capacitor
oC
joL  for an inductor

Z is called the complex impedance of the element, and V = IZ is the complex voltage.
For the general LCR circuit shown in Figure 3.18 the complex voltage V is the
algebraic sum of the complex voltages of the individual elements; that is,

i1
V=IR+joLl - =1z
oC

where

Z=R+joL -1
oC

The actual voltage
v = Im(Vel) = | Z| sin(wt + )

where

2
|Z|=|R* +| Lo — —
Cwo
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is the impedance of the circuit and

5 tan"(Lw - 1/Ca))
R

o INLC) @ g the phase. The impedance | Z| clearly varies with w, and the graph of this dependence
Figure 3.19 is shown in Figure 3.19. The minimum value occurs when Lo = 1/Cw; that is, when
The impedance of ® = 1A(LC). This implies that the circuit ‘blocks’ currents with low and high frequencies,

an LCR circuit.

and ‘passes’ currents with frequencies near 1/(27\(LC)).

Example 3.32  Calculate the complex impedance of the element shown in Figure 3.20 when an altern-

ating current of frequency 100 Hz flows.

Solution  The complex impedance is the sum of the individual impedances. Thus

150 413mH Z=R+ jolL
A" Here R =150, w = 27 X 100tads ' and L = 41.3 X 107*H, so that
Figure 3.20 Z=15+j259
The element of
Example 3.32. and [Z| =30Q and ¢ = 1.

57

58

3.6.1 Exercises

Calculate the complex impedance for the circuit Z Z,
shown in Figure 3.21 when an alternating current o—  __F—1 1+ Z=Z+1Z
of frequency 50 Hz flows. (a)

Z

572mH  100Q 40 uF

o3|} —

Figure 3.21

N|=
Nl-
Nl—

ZZ

(b)
The complex impedance of two circuit elements in
series as shown in Figure 3.22(a) is the sum of the Figure 3.22
complex impedances of the individual elements,
and the reciprocal of the impedance of two Z,
elements in parallel is the sum of the reciprocals
of the individual impendances, as shown in
Figure 3.22(b). Use these results to calculate the
complex impedance of the network shown in
Figure 3.23, where Z, = 1 +jQ0, Z, =5 — j50Q
and Z, =1+ j2Q.

Figure 3.23
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3.7 Review exercises (1-34)

Check your answers using MATLAB whenever possible.

1 Letz=4+j3andw =2 — j. Calculate 8  Show that the solutions of
(a) 3z (b) w ) zw #=324+1=0
) 2 (e) Izl ) wiz are given by

z = 2¢c0836°, 2cos72° 2c0s216°, 2 cos252°

1 . E
@ z—— (argz (@ 22
W Hence show that

2  For x and y real solve the equation (@) cos36° =+(H5+1)
Jy y+id_, (b) cos72° = +(5-1)
jerl o Sxy 9  Prove that if p(z) is a polynomial in z with real

| @iz = @ 4 0 = ) il e el il coefficients then [ p(z)]* = p(z*). Deduce that
] ] 1 the roots of a polynomial equation with real

imaginary parts of z + z . . . . .
gimnary p LT coefficients occur in complex-conjugate pairs.

4 (a) Find the loci in the Argand diagram 10 Show that
corresponding to the equation

|z = 1] =2]z -]
(b) If the point z = x + jy describes the circle

(a) sin* = +[cos 40 — 4 cos 20 + 3]
(b) sin’0 = & [sin 560 — 5 sin 36 + 10 sin 6]

|z — 1| = 1, show that the real part of 1/(z — 2) (c) cos’® = 37 [cos 60 + 6 cos 46 + 15 cos 20 + 10]
is constant. (d) cos’ sin’0 = [2sin@ + sin 30 — sin 56]
5  Writing In[(x + jy + @)/(x + jy — @)] = u + jv, 11 Prove that the statements
Ry i @ |z+1]>]z=1] (®) Re® >0
(a) x>+ y* — 2axcothu + a> =0 .
are equivalent.
(b) x = a sinh u/(cosh u — cos v)
. 12 For a certain network the impedance Z is given by
(©) |x+ jy|* = @*(cosh u + cos v)/(cosh u — cos v)
1+ jo
6 A circuit consists of a resistance R, and an T+ jo — ®*

inductance L in parallel connected in series with

a second resistance R,. When a voltage V of

frequency w/27 is applied to the circuit the

complex impedance Z is given by 13

Sketch the variation of | Z| and arg Z with the
frequency w. (Take values of w = 0.)

The characteristic impedance Z, and the
1 1 1 propagation constant C of a transmission line
are given by

Zy =\(Z/Y) and C = (ZY)

where Z is the series impedance and Y the
admittance of the line, and Re(Z;) > 0 and

Re(C) > 0. Find Z; and C when Z = 0.5 + j0.3Q)
and Y = (1 — j250) X 1078Q.

Z-R R joL
Show that if R, varies from zero to infinity the

locus of Z on the Argand diagram is part of a
circle and find its centre and radius.

7 (a) Express cos 66 as a polynomial in cos 6.

(b) Given z = cos6 + jsinf show, by expanding 14 The input impedance Z of a particular network
(z + 1/2)°(z — 1/z)° or otherwise, that is related to the terminating impedance z by the
equation

7= A+j)z-2+j4
+ 10 sin 26) B Z4+1+j

sin’g cos’) = 21—9(sin 100 — 5 sin 60
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15

16

17

18

19

20

Find Z when z = 0, 1 and j ) and sketch the
variation of |Z | and arg Z as z moves along
the positive real axis from the origin.
Find the modulus and argument of

G+ jd*az - jsy

(G- 4?02 + j5)
Express in the form a + jb, with a and b expressed
to 2dp
(a) sin(0.2 + j0.48)
(c) cosh(3.8 —j5.2)

(e) cos(zm — j)

(b) cosh™'(j2)
(d) In2 + j)

Using complex numbers, show that
sin’@ = 57 (35 sin® — 21sin 36
+ 7sin 56 — sin76)
Two impedances Z, and Z, are related by the
equation
Z, = Z, tanh(al + jBI)

where «, 8 and [ are real. If al is so small that
we may take sinhal = al, coshal = 1 and (al)®
as negligible, show that

Z, = Zylalsec’Bl + jtan BI]
In a transmission line the voltage reflection
equation is given by

Z-12,
Z+2,

Kel? =

where K is a real constant, Z = R + jX and Z, =
R, + jX,. Obtain an expression for 6, the phase
angle, in terms of R, R, X,, and X. Hence show
that if Z, is purely resistive (that is, real) then
6 = tan" [L}
R*+X? - R}

assuming R < R”> + X>.
The voltage in a cable is given by the expression

Zgy
cosh nx + 70 sinh nx

Calculate its value in the form a + jb, giving a and
b correct to 2dp, when

nx = 0.40 + j0.93

Z,=15-j20 Z =3+i4

21

22

23

24

25

26

27

Express Z = cosh(0.5 + j%n’) in the forms
(@) x + jy (b) re’

The current in a cable is equal to the real part
of the expression e/*’/Z. Calculate the current,
giving your answer correct to 3dp.

Show that if the propagation constant of a cable is
given by
X +jY =R + joL)(G + jwC)]

where R, G, w, L and C are real, then the value of
X? is given by

X = 3{RG — &’LC +\[(R* + &’L?)
X (G* + o’CH]}
Given Z = (1 + j)/(3 — j4) obtain
@ Z (b) Vz () ¢
(d) InZ (e) sin Z
in the form a + jb, a, b real, giving a and b correct

to 2dp.

Find, in exponential form, the four values of

[7 - j24]”4
25

Denoting any one of these by p, show that the
other three are given by j'p (n = 1, 2, 3).

Determine the six roots of the complex number

—1 + jV3, in the form re’’ where —7 < § < 7, and
show that three of these are also solutions of the
equation

V2ZP+1+j\3=0

Find the real part of
(R + joL)/joC
joL + R+ 1/joC

and deduce that if R* is negligible compared
with (wL)? and (LCw?)? is negligible compared
with unity then the real part is approximately
R(1 + 2LC&?).

Show that if @ is a complex cube root of unity,
then w®> + w + 1 = 0. Deduce that
x+y+ 2+ oy + o) + 0y + w2)

=x+y>+ 2> — 3xyz
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28

29

30

31

32

Hence show that the three roots of 33
X+ (“3yox+ (P +2)=0
are
x==(y+2, —(0y + 0’2, —(0’y + w2)
Use this result to obtain Cardano’s solution to the
cubic equation
X+ag+r=0
in the form
=(@ =F V)
where 1’ = 3r +\[372 + 5 ¢’
and v’ = 37— \[£7 + $ 4]

34

Express the remaining two roots in terms of «, v and
w and find the condition that all three roots are real.

ABCD is a square, lettered anticlockwise, on

an Argand diagram. If the points A, B represent
3 +j2, —1 + j4 respectively, show that C lies on
the real axis, and find the number represented by
D and the length of AB.

Ifzy=3+j2andz, =1 +j,and O, P, Q,R
represent the numbers 0, z,, z,2,, z,/z, on the
Argand diagram, show that RP is parallel to OQ
and is half its length.

Show that as z describes the circle z = be?,
u + jv = z + a*/z describes an ellipse (a # b).
What is the image locus when a = b?

Show that the function

w=—
4

where z = x + jy and w = u + jv, maps the line
3x + 4y = 1 in the z plane onto a circle in the
w plane and determine its radius and centre.

Show that the function
w=({1+jz+1

where z = x + jy and w = u + jv, maps the line
y = 2x — 1 in the z plane onto a line in the w plane
and determine its equation.

Show that the function

z—1
z+1

where z = x + jy and w = u + jv, maps the circle
|Z| = 3 on the z plane onto a circle in the
w plane.
Find the centre and radius of this circle in
the w plane and indicate, by means of shading
on a sketch, the region in the w plane that
corresponds to the interior of the circle |z| = 3
in the z plane.

Show that as 6 varies, the point z = a(h + cos0)
+ ja(k + sin @) describes a circle. The Joukowski
transformation u + jv = z + [*/z is applied to
this circle to produce an aerofoil shape in the
u—v plane. Show that the coordinates of the
aerofoil can be written in the form

2o (h + cosB)
a

2
x(1+ ! - )
a*(1 + h* + k* + 2hcos B + 2k sin 6)

Y — (k +5in0)
a

2
x(l— ! )
a*(1 + h* + k* + 2hcos B + 2k sin 6)

Taking the case @ = 1 and / 2 = 8, trace the aerofoil
where

(a) h =k =0, and show that it is an ellipse;

(b) h = 0.04, k = 0 and show that it is a
symmetrical aerofoil with a blunt leading
and trailing edge;

(¢) h =10, k= 0.1 and show that it is a symmetrical
aerofoil (about the v axis) with camber;

(d) h=0.04, k = 0.1 and show that it is a non-
symmetrical aerofoil with camber and rounded
leading and trailing edges.
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4.1

Introduction

Much of the work of engineers and scientists involves forces. Ensuring the structural
integrity of a building or a bridge involves knowing the forces acting on the system
and designing the structural members to withstand them. Many have seen the dramatic
pictures of the Tacoma bridge disaster (see also Section 10.10.3), when the forces acting
on the bridge were not predicted accurately. To analyse such a system requires the use
of Newton’s laws in a situation where vector notation is essential. Similarly, in a recipro-
cating engine, periodic forces act, and Newton’s laws are used to design a crankshaft
that will reduce the side forces to zero, thereby minimizing wear on the moving parts.
Forces are three-dimensional quantities and provide one of the commonest examples of
vectors. Associated with these forces are accelerations and velocities, which can also
be represented by vectors. The use of formal mathematical notation and rules becomes
progressively more important as problems become complicated and, in particular, in
three-dimensional situations. Forces, velocities and accelerations all satisfy rules of
addition that identify them as vectors. In this chapter we shall construct an algebraic
theory for the manipulation of vectors and see how it can be applied to some simple
practical problems.

The ideas behind vectors as formal quantities developed mainly during the nine-
teenth century, and they became a well-established tool in the twentieth century. Vectors
provide a convenient and compact way of dealing with multi-dimensional situations
without the problem of writing down every bit of information. They allow the principles
of the subject to be developed without being obscured by complicated notation.

It is inconceivable that modern scientists and engineers could work successfully
without computers. Since such machines cannot think like an engineer or scientist, they
have to be told in a totally precise and formal way what to do. For instance, a robot arm
needs to be given instructions on how to position itself to perform a spot weld. Three-
dimensional vectors prove to be the perfect way to tell the computer how to specify the
position of the workpiece of the robot arm and a set of rules then tells the robot how to
move to its working position.

Computers have put a great power at the disposal of the engineer; problems that
proved to be impossible fifty years ago are now routine. With the aid of numerical algo-
rithms, equations can often be solved very quickly. The stressing of a large structure
or an aircraft wing, the lubrication of shafts and bearings, the flow of sewage in pipes
and the flow past the fuselage of an aircraft are all examples of systems that were well
understood in principle but could not be analysed until the necessary computer power
became available. Algorithms are usually written in terms of vectors and matrices (see
Chapter 5), since these form a natural setting for the numerical solution of engineering
problems and are also ideal for the computer. It is vital that the manipulation of vec-
tors be understood before embarking on more complex mathematical structures used in
engineering computations.

Perhaps the most powerful influence of computers is in their graphical capabilities,
which have proved invaluable in displaying the static and dynamic behaviour of sys-
tems. We accept this tool without thinking how it works. A simple example shows the
complexity. How do we display a box with an open top with ‘hidden’ lines when we
look at it from a given angle? The problem is a complicated three-dimensional one that
must be analysed instantly by a computer. Vectors allow us to define lines that can be
projected onto the screen, and intersections can then be computed so that the ‘hidden’
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4.2

4.2.1

Figure 4.1

(a) Right-handed
coordinate axes.

(b) Right-hand rule.

portion can be eliminated. Extending the analysis to a less regular shape is a formida-
ble vector problem. Work of this type is the basis of CAD/CAM systems, which now
assist engineers in all stages of the manufacturing process, from design to production
of a finished product. Such systems typically allow engineers to manipulate the product
geometry during initial design, to produce working drawings, to generate toolpaths in
the production process and generally to automate a host of previously tedious and time-
consuming tasks.

The general development of the theory of vectors is closely associated with coordi-
nate geometry, so we shall introduce a few ideas in the next section that will be used later
in the chapter. The comments largely concern the two- and three-dimensional cases, but
we shall mention higher-dimensional extensions where they are relevant to later work,
such as on the theory of matrices. While in two and three dimensions we can appeal
to geometrical intuition, it is necessary to work in a much more formal way in higher
dimensions, as with many other areas of mathematics.

Basic definitions and results

Cartesian coordinates

Setting up rectangular cartesian axes Oxyz or Ox,x,x;, we define the position of a point
by coordinates or components (x, y, 7) or (x;, X,, Xx;), as indicated in Figure 4.1(a). The
indicial notation is particularly important when we consider vectors in many dimensions
(x5 X5, ..., x,). The axes Ox, Oy, Oz, in that order, are assumed to be right-handed in
the sense of Figure 4.1(b), so that a rotation of a right-handed screw from Ox to Oy
advances it along Oz, a rotation from Oy to Oz advances it along Ox and a rotation from
Oz to Ox advances it along Oy. This is an accepted convention, and it will be seen to
be particularly important when we deal with the vector product (see Section 4.2.10).
The length of OP in Figure 4.1(a) is obtained from Pythagoras’ theorem as

=3+ yz + )"

The angle « = £ POA in the right-angled triangle OAP is the angle that OP makes with
the positive x direction, as in Figure 4.2. We can see that

z axis 4 X, axis 4 .
Z :‘~.‘ X5 :~‘~‘
T om Plxy2) T 5o P, x, )
! l
r i r !
! l
: :
: -
0= ; — 0 j— - (0]
XA RS yaxas oy Ao T--..pys X axis y
X axis X, axis X

(@ (b)
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Figure 4.2

Direction cosines

of OP, [ = cosa,

m = cosf, n = cosvy.

Example 4.1

Solution

Example 4.2

Solution

X
[=coso=—
’

Likewise, 8 and vy are the angles that OP makes with y and z directions respectively, so

z
n=cosy =—

mzcosﬁzz,
r 7

The triad (I, m, n) are called the direction cosines of the line OP. Note that

I T 222
Pym?+n?=" 42 S e
)
/

+ L 42 =1
r2 r2 7'2

If P has coordinates (2, —1, 3), find the length OP and the direction cosines of OP.
OP?= (22 + (=1 +@3*=4+1+9, sothat OP =14

The direction cosines are
L 1 1
I=21, m=-Viz, n=31u

A surveyor sets up her theodolite on horizontal ground, at a point O, and observes the top
of a church spire, as illustrated in Figure 4.3. Relative to axes Oxyz, with Oz vertical, the
surveyor measures the angles 2 TOx = 66° and £ TOz = 57°. The church is known to
have height 35 m. Find the angle £ TOy and calculate the coordinates of T with respect
to the given axes.

The direction cosines
I =cos 66° = 040674 and n = cos57° = 0.54464

are known and hence the third direction cosine can be computed as
m?>=1—1*>—n*=0.53793

Thus, m = 0.73344 and hence £ TOy = cos(0.73344) = 42.82°. The length OT = r
can now be computed from the known height, 35 m, and the direction cosine n, as
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Figure 4.3
Representation of the
axes and church spire
in Example 4.2.

4.2.2

O o’

Figure 4.4
Line segments
representing a
vector a.

cos 57° = 35/r, so r=6426m

The remaining coordinates are obtained from
x/r = cos 66° and y/r = cos 42.82°

giving x = rcos 66° = 26.14 and y = rcos 42.82° = 47.13
Hence the coordinates of T are (26.14, 47.13, 35).

Scalars and vectors

Quantities like distance or temperature are represented by real numbers in appropri-
ate units, for instance 5m or 10°C. Such quantities are called scalars — they obey the
usual rules of real numbers and they have no direction associated with them. However,
vectors have both a magnitude and a direction associated with them; these include
force, velocity and magnetic field. To qualify as vectors, the quantities must have more
than just magnitude and direction — they must also satisfy some particular rules of
combination. Angular displacement in three dimensions gives an example of a quantity
which has a direction and magnitude but which does not add by the addition rules of
vectors, so angular displacements are not vectors.

We represent a vector geometrically by a line segment whose length represents
the vector’s magnitude in some appropriate units and whose direction represents the
vector’s direction, with the arrowhead indicating the sense of the vector, as shown in
Figure 4.4. According to this definition, the starting point of the vector is irrelevant. In
Figure 4.4, the two line segments OA and O’ A’ represent the same vector because their
lengths are the same, their directions are the same and the sense of the arrows is the
same. Thus each of these vectors is equivalent to the vector through the origin, with
A given by its coordinates (a,, a,, a;), as in Figure 4.5. We can therefore represent a
vector in a three-dimensional space by an ordered set of three numbers or a 3-tuple.
We shall see later how this representation is used.

We shall now introduce some of the basic notation and definitions for vectors. The
vector of Figure 4.5 is handwritten or typewritten as a, a, OA. On the printed page, bold-
face type a is used. Using the coordinate definition, the vector could equally be written
as (a,, a,, a,). (Note: There are several possible coordinate notations; the traditional
one is (a,, a,, as), but in Chapter 5 on matrices we shall use an alternative standard
notation.)
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Figure 4.5 z
Representation of the | Ala,.a,,a;)
vector a by the line !
segment OA. !
a 1
I
14
1
i
I
(e} ;
Voo <~ b y
Tay g
X a,

Some basic properties of vectors are:

(a) Equality
As we considered earlier, two vectors @ and b are equal if and only if they have the same
modulus and the same direction and sense. We write this in the usual way

a=>b

We shall see later that in component form, two vectors a = (ay, a,, a;) and b = (b,, b,, bs)
are equal if and only if the components are equal, that is

a,=b, a=>b, a;=Db,

(b) Multiplication by a scalar
If A is a scalar and the vectors are related by @ = Ab then

e ifA>0, aisa vector in the same direction as b with magnitude A times the
magnitude of b;

e if A <0, aisa vector in the opposite direction to b with magnitude | | times
the magnitude of b.

(c) Parallel vectors
The vectors a and b in property (b) are said to be parallel or antiparallel according as
A > 0 or A < 0O respectively. (Note that we do not insert any multiplication symbol
between A and b since the common symbols - and X are reserved for special uses that
we shall discuss later.)

(d) Modulus

The modulus or length or magnitude of a vector a is written as |a| or |OA| or a if
there is no ambiguity. A vector with modulus one is called a unit vector and is written
a, with the hat (") indicating a unit vector. Clearly

n . a
a=|a|a or 4=—
|a|

(e) Zero vector
The zero or null vector has zero modulus; it is written as 0 or often just as O when there
is no ambiguity whether it is a vector or not.
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Example 4.3

Solution

Figure 4.6 Cyclist’s
path in Example 4.3.

4.2.3

A cyclist travels at a steady 16 kmh™' on the four legs of his journey. From his origin,
O, he travels for one hour in a NE direction to the point A; he then travels due E for
half an hour to point B. He then cycles in a NW direction until he reaches the point
C, which is due N of his starting point. He returns due S to the starting point. Indicate
the path of the cyclist using vectors and calculate the modulus of the vectors along BC
and CO.

The four vectors are shown in Figure 4.6. If { and J are the unit vectors along the two
axes then by property (b)

AB=8 and CO= -1y

where L is still to be determined. By trigonometry
DB =8 + 165in 45° = § + 8\2

and hence the modulus of the vector BC is

DB
cos45°

|IBC| = =82+ 16

The modulus L of the vector CO is
L=|CO|=CD + DO = (8 + 812) + 16 cos 45° = 8 + 16\2

N
W*LE
S
3 B

D A

45° 16

Addition of vectors

Having introduced vectors and their basic properties, it is natural to ask if vectors can be
combined. The simplest form of vector combination is addition and it is the definition of
addition that finally identifies a vector. Consider the following situation. A small motor
boat is steered due east (E) at 4 knots for one hour. The path taken by the boat could
be represented by the line OA, or a, in Figure 4.7. Unfortunately there is also a tidal
stream, b, running north-north-east (NNE) at 2% knots. Where will the boat actually be
at the end of one hour?

If we imagine the vessel to be steaming E for one hour through still water, and then
lying still in the water and drifting with the tidal stream for one hour, we can see that
it will travel from O to A in the first hour and from A to C in the second hour. If, on
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Figure 4.7
Addition of
two vectors.

Figure 4.8
Parallelogram rule for
addition of vectors.

0P

Sl

a

Figure 4.9
Triangle law for
addition of vectors.

Figure 4.10
Polygon law for
addition of vectors.

T

the other hand, the vessel steams due E through water that is simultaneously moving
NNE with the tidal stream then the result will be to arrive at C after one hour. The net
velocity of the boat is represented by the line OC. Putting this another way, the result
of subjecting the boat to a velocity OA and a velocity AC simultaneously is the same
as the result of subjecting it to a velocity OC. Thus the velocity OC =a + b is the sum
of the velocity OA = a and the velocity AC = b.

This leads us to the parallelogram rule for vector addition illustrated in Figure 4.8
and stated as follows:

The sum, or resultant, of two vectors a and b is found by forming a paral-
lelogram with a and b as two adjacent sides. The sum a@ + b is the vector
represented by the diagonal of the parallelogram.

In Figure 4.8 the vectors OB and AC are the same, so we can rewrite the parallelo-
gram rule as an equivalent triangle law (Figure 4.9), which can be stated as follows:

If two vectors @ and b are represented in magnitude and direction by the
two sides of a triangle taken in order, then their sum is represented in
magnitude and direction by the closing third side.

The triangle law for the addition of vectors can be extended to the addition of any
number of vectors. If from a point O (Figure 4.10), displacements m), ﬁ, B—C>, . K
are drawn along the adjacent sides of a polygon to represent in magnitude and direction
the vectors a, b, c, ..., k respectively, then the sum

r=a-+b+c+..+k

of these vectors is represented in magnitude and direction by the closing side OK of
the polygon, the sense of the sum vector being represented by the arrow in Figure 4.10.
This is referred to as the polygon law for the addition of vectors.

We now need to look at the usual rules of algebra for scalar quantities to check
whether or not they are satisfied for vectors.

(a) Commutative law
a+b=>b+a

This result is obvious from the geometrical definition, and says that order does not
matter.
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(b) Associative law
(@+b)+c=a+ b +c)
Geometrically, the result can be deduced using the triangle and polygon laws, as shown
in Figure 4.11. We see that brackets do not matter and can be omitted.
Figure 4.11

Deduction of the
associative law.

(c) Distributive law

Ma +b)=la+ \b

The result follows from similar triangles. In Figure 4.12 the side O'B’ is just A times
OB in length and in the same direction, so OB =) (a + b). The triangle law therefore
gives the required result since O'B’ = O’'A’ + A’B’ = Aa + Ab. This result just says
that we can multiply brackets out by the usual laws of algebra.

Figure 4.12
Similar triangles
for the proof of the
distributive law.

B’

B Aa +b) b

(6] A o’ A’

(d) Subtraction
We define subtraction in the obvious way:

a—b=a+ (—b)
This is illustrated geometrically in Figure 4.13. Applying the triangle rule to triangle
OAB gives
BA =BO + OA = OA + BO
=0A — OB since BO = —OB
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Figure 4.13
Subtraction of vectors.

Example 4.4

Figure 4.14
Figure of Example 4.4.

Solution

Example 4.5

from which the important result is obtained, namely

BA = OA — OB

From Figure 4.14, evaluate
g in terms of @ and b, finterms of b and ¢

e in terms of ¢ and d, e interms of f, g and h

From the triangle OAB: AB = AO + OB and hence g=a+tb
From the triangle OBC: CB = OB — OC and hence f=b-c
From the triangle OCD: CD =0D — OCandhencee =d — ¢
From the quadrilateral CBAD the polygon rule gives

C—D>+m)+ﬂ3)+ﬁ=0andhencee+(—h)+g+(—f)=0,soe=f—g+h

A quadrilateral OACB is defined in terms of the vectors OA =a, ﬁ?:_:)b and OC =
b + +a. Calculate the vector representing the other two sides BC and CA.
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Solution

Example 4.6

Solution

Figure 4.15
Figure of Example 4.6.

Example 4.7

Solution

Now as in rule (d)
BC =BO + OC = —0B + OC
SO
BC=0C-0B=@®+1a)—b=1a
and similarly CA =0A —OC=a — (b +4a)=1a — b

A force F has magnitude 2N and a second force F' has magnitude 1N and is inclined
at an angle of 60° to F, as illustrated in Figure 4.15. Find the magnitude of the resultant
force R and the angle it makes to the force F.

(i) Now, from Figure 4.15 we have R = F + F', so we require the length OC and the
angle CON.

N

(i) We first need to calculate CN and AN using trigonometry. Noting that |F’| =
OB = AC = 1 we see that

CN = AC sin 60° = % and AN = AC cos 60° = %
(iii) Noting that |F|= OA =2 then ON = OA + AN = 3. Thus using Pythagoras’
theorem

OC? = ON? + CN? = (£) 1 (3 =7

and hence the resultant has magnitude V7.

(iv) The angle CON is determined from tan CON:C_N=§ giving angle
ON

CON = 19.1°.

An aircraft is flying at 400 knots in a strong NW wind of 50 knots. The pilot wishes to
fly due west. In which direction should the pilot fly the aircraft to achieve this end, and
what will be his actual speed over the ground?

The resultant velocity of the aircraft is the vector sum of 50 knots from the NW direc-
tion and 400 knots in a direction a® ﬂ))rth of west. In appropriate units th_e)situation is
shown in Figure 4.16(a). The vector OA represents the wind velocity and OB represents
the aircraft’s velocity. The resultant velocity is OP, which is required to be due W. We
wish to determine the angle « (giving the direction of flight) and magnitude of the
resultant velocity (giving the ground speed).
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400 sin «

S 400cosa |
B 50 cos 45°

A 50 sin 45°

(a) (b)

Figure 4.16 (a) The track of the aircraft in Example 4.7. (b) Resolving the velocity into components.

Resolving the velocity into components as illustrated in Figure 4.16(b) and recogniz-
ing that the resultant velocity is in the westerly direction, we have no resultant velocity
perpendicular to this direction. Thus

400 sin a® = 50 sin 45°
so that

a =5.07°
The resultant speed due west is

400 cos a® — 50 cos 45° = 363 knots

Example 4.8 If ABCD is any quadrilateral, show that AD + BC = 2EF, where E and F are the
midpoints of AB and DC respectively, and that

AB + AD + CB + CD = 4XY
where X and Y are the midpoints of the diagonals AC and BD respectively.

Solution  Applying the polygon law for the addition of vectors to Figure 4.17,
EF =EA + AD + DF

and
EF =EB + BC + CF
E A Adding these two then gives
B D 2EF = EA + AD + DF + EB + BC + CF
=AD + BC + A{BA +1CD —1BA —1CD)
since E and F are the midpoints of AB and CD respectively. Thus
c 2EF = AD + BC

Figure 4.17 Also, by the polygon law for addition of vectors,

Quadrilateral of sy
Example 4.8. XY = XA + AB + BY
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and

XY = XC + CB + BY

Adding and multiplying by 2 gives
4XY = 2XA + 2AB + 2BY + 2XC + 2CB + 2BY
= 2AB + 2CB + 4BY

= 2AB + 2CB + BD

(since XA = —%)
(since BD = 2BY)

= AB + CB + (AB + BD) + (CB + BD)

so that

4XY = AB + CB + AD + CD

4.2.4 Exercises

Given two non-parallel Vectors aandb, indicate on
a diagram the vectors @ + b, 2a +b,b — 2a
3a-b.

2
An aircraft flies 100 km in a NE direction, then
120 km in an ESE direction and finally S for a
further 50 km. Sketch the vectors representing this
flight path. What is the distance from start to finish
and also the length of the flight path?

(a) Given two non-parallel vectors a and b, show
on a diagram that any other vector r can be written
asr = aa + b with constants « and .

(b) Given three non-coplanar, non-parallel vectors
a, b and ¢, show on a diagram that any other
vector r can be written as r = aa + b + yc with
constants «, 3 and vy.

The vector OP makes an angle of 60° with the
positive x axis and 45° with the positive y axis.
Find the possible angles that the vector can make
with the z axis.

The vectors O OA = aand OB = b are given. Find
the vector OC representing the point C on AB that
divides AB in the ratio AC:CB = 1:2.

— —
(a) For two vectors a = OA and b = OB show
that the midpoint of AB has the vector %(a + b).

(b) The midpoints of the sides of the quadrilateral
ABCD are PQRS. Show that PQRS forms a
parallelogram.

10

A regular hexgon OACDEB has adjacent 31des
OA = a and OB = b. Find the vectors OC OD
OE representing the other three corners in terms of
a and b.

A bird flies N at a speed of 20ms™ but the wind
is simutaneously carrying it E at Sms™". Find the
actual speed of the bird and the angle it deviates
from N.

A cyclist travelling east at 8 kilometres per hour
finds that the wind appears to blow directly from
the north. On doubling her speed it appears to blow
from the north-east. Find the actual velocity of the
wind.

A weight of 100 N is suspended by two wires
from a horizontal beam, as in Figure 4.18. Find the
tension in the wires.

45° 45°

100N

Figure 4.18 Suspended weight in Exercise 10
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4.2.5 Cartesian components and basic properties

Figure 4.19
The component form
of a vector.

We saw earlier that vectors could be written as an ordered set of three numbers or 3-tuple
(see Section 4.2.2). We shall now explore the properties of these ordered triples and
how they relate to the geometrical definitions used in previous sections.

In Figure 4.19, we denote mutually perpendicular unit vectors in the three coordi-
nate directions by i, j and k. (Sometimes the alternative notation é,, €, and €, is used.)
The notation i, j, k is so standard that the ‘hats’ indicating unit vectors are usually
omitted.

Applying the triangle law to the triangle OXM, we have
OM = OX + XM = xi + Vi
Applying the triangle law to the triangle OMP then yields
OPF =OM + MP = xi + yj + zk @.1)

The analysis applies to any point, so we can write any vector r in terms of its
components x, y, z with respect to the unit vectors Z, j, k as

r=xi +y + zk

Indeed, the vector notation r = (x, y, z) should be intepreted as the vector given in (4.1).
In some contexts it is more convenient to use a suffix notation for the coordinates, and

(X, X0, X3) = X6, + X,6, + X536,
is interpreted in exactly the same way. It is assumed that the three basic unit vectors are
known, and all vectors in coordinate form are referred to them.
The modulus of a vector is just the length OP, so from Figure 4.19 we have, using
Pythagoras’ theorem,

|r| = (2 4 y? + )"

The basic properties of vectors follow easily from the component definition in (4.1).
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Figure 4.20
Parallelogram rule, x
component.

(a) Equality
Two vectors a = (a,, a,, a;) and b = (b,, b,, b;) are equal if and only if the three
components are equal, that is

a=b, a,=Db, a;= Db,

(b) Zero vector

The zero vector has zero components, S0
0=(0,0,0)

(c) Addition

The addition rule is expressed very simply in terms of vector components:
a+b=( +b,a + b, a;+ by

The equivalence of this definition with the geometrical definition for addition using the
parallelogram rule can be deduced from Figure 4.20. We know that OB = AC, since
they are equivalent displacements, and hence their x components are the same, so that
we have OL = MN. Thus if we take the x component of @ + b

(@+b),=ON=0M + MN = OM + OL = q, + b,

the y and z components can be considered in a similar manner, giving (@ + b), = a, + b,
and (a + b); = a; + bs.

(d) Multiplication by a scalar
If A is a scalar and the vectors are related by @ = Ab then the components satisfy

a, = Aby,, a, = Ab,, ay= Ab,

which follows from the similar triangles of Figure 4.12.

(e) Distributive law
The distributive law in components is simply a restatement of the distributive law for
the addition of numbers:
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Example 4.9

Solution

Ma + b) = Ma, + by, a, + by, a; + b;)
= (Ma, + b)), Ma, + by), Mas + by)
= (Aa, + Ab,, Aa, + Aby, Aas + Aby)
= (Aay, Ay, Ady) + (Aby, Aby, Aby)
=Aa + Ab
(f) Subtraction

Subtraction is again straightforward and the components are just subtracted from
each other:

a—>b=(a, —b,a,— by, a; — by)

The component form of vectors allows problems to be solved algebraically and
results can be interpreted either as algebraic ideas or in a geometrical manner. Both
these interpretations can be very useful in applications of vectors to engineering.

In MATLAB a vector is inserted as an array within square brackets, so, for
example, a vectora = (1,2, 3)isinsertedasa = [1 2 3]ora = [1,2,3],where
in the latter commas have been used instead of spaces. The operations of addition,
subtraction and multiplication by a scalar are represented by +, - and * respectively,
but to evaluate the operations numerically requires the instruction evalm. The mag-
nitude or length of a vector @ appears in MATLAB as norm(a).

Determine whether constants « and 8 can be found to satisfy the vector equations
(a 2,1,0) = a(—2,0,2) + B(1, 1, 1)
(b) (—3,1,2) =a(—2,0,2) + B(1, 1, 1)

and interpret the results.

(a) For the two vectors to be the same each of the components must be equal, and hence

2=-"2a+p
1=p
0=2a+p

Thus the second equation gives 3 = 1 and both of the other two equations give the same
value of @, namely a = —%, so the equations can be satisfied.

(b) A similar argument gives
—3=-2a+f
1=p
2=2a+p
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Example 4.10

Solution

Example 4.11

Solution

Again, the second equation gives 3 = 1 but the first equation leads to @ = 2 and the

third to @ = 1. The equations are now not consistent and no appropriate & and 3 can
be found.

In case (a) the three vectors lie in a plane, and any vector in a plane, including the one
given, can be written as the vector sum of the two vectors (—2, 0, 2) and (1, 1, 1) with
appropriate multipliers. In case (b), however, the vector (—3, 1, 2) does not lie in the
plane of the two vectors (—2, 0, 2) and (1, 1, 1) and can, therefore, never be written as
the vector sum of the two vectors (—2, 0, 2) and (1, 1, 1) with appropriate multipliers.

Given the vectorsa = (1,1, 1), b = (—1, 2, 3) and ¢ = (0, 3, 4), find
(@) a+b (b) 2a — b ©)a+b—-c

(d) the unit vector in the direction of ¢

@Wat+b=0—1,1+21+3) =034

) 2a—b=@2X1—(—1).2X1-22%1-3)=(3.0, -1
©a+b—c=(0—-1+01+2-31+3-4)=(0.0.0)=0
(d) |e]| =@+ 4H" =550

e=2=014

[TAES

c
3 )

Givena = (2, -3,1)=2i — 3+ k,b=(1,5,-2) =i+ 5 — 2kandc = (3, —4,3) =
3i — 4j + 3k

(a) find the vectord = a — 2b + 3c;
(b) find the magnitude of d and write down a unit vector in the direction of d;

(¢) what are the direction cosines of d?

(a) d=a—2b+ 3¢
=Qi—3+k) —20+5—2k)+33i -4+ 3k)
=Qi—3+k) — Qi+ 10 — 4k) + (9 — 12j + 9%k)
=Q2-2+9i+(-3-10—-12)j +(1 +4+ 9k
that is,d = 9i — 25j + 14k.

(b) The magnitude of d is d = [9* + (—25)* + 14%] =902
A unit vector in the direction of d is d where
9 i 25 + 14 K
902"~ Yooz T oo

g=9_
d
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(¢) The direction cosines of d are 9/V902, —25/V902 and 14/V902.

Check that in MATLAB the commands

a=[2 -31]; b=1[15 -21; ¢ = [3 -4 3];
d =a - 2*b + 3*c

return the answer given in (a) and that the further command
norm (d)

gives the magnitude of d as 30.0333. Here MATLAB gives the numeric answer; to
obtain the answer in the exact form then the calculation in MATLAB must be done
symbolically using the Symbolic Math Toolbox. To do this the vector d must first be
expressed in symbolic form using the sym command.

Example 4.12 A molecule XY, has a tetrahedral form; the position vector of the X atom is (23 + 2,
0, -2+ \/6) and those of the three Y atoms are

oY = (\3, =2, —1), OY = (\3,2, —1), OY" = (\2,0,6)
(a) Show that all of the bond lengths are equal.
(b) Show that XY + YY' + YY" + Y'Y = 0

Solution (a) XY = OY — OX = (—V3 — V2, =2, 1 — \6) and the bond length is
IXY| = [(—V3 = V2) + (=2 + (1 — V6] = 4

YY' =0Y — OY = (0, 4, 0) and clearly the bond length is again 4.

The other four bonds W, W, Y'Y, Y"X are treated in exactly the same way, and
each gives a bond length of 4.

(h) Now YY" = OY' — OY' = (2 — 3, =2, V6 + 1) and Y'X = OX — OY"
= (2\/3, 0, —2), so adding the four vectors gives

XY +YY +YY +Y'X
=(=V3—=1V2,=2,1 =V6) + (0,4,0) + (2 — V3, =2,\6 + 1) + (213, 0, —2)
=0

and is just a verification of the polygon law.

Example 4.13 Three forces, with units of newtons,
Fl = (1’ 19 l)
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Solution

Example 4.14

Figure 4.21

Solution

F, has magnitude 6 and acts in the direction (1, 2, —2)
F; has magnitude 10 and acts in the direction (3, —4, 0)

act on a particle. Find the resultant force that acts on the particle. What additional force
must be imposed on the particle to reduce the resultant force to zero?

The first force is given in the usual vector form. The second two are given in an equally
acceptable way but it is necessary to convert the information to the normal vector form
so that the resultant can be found by vector addition. First the unit vector in the given
direction of F, is required:

|(1, 2, —2)| =1 +2>+(—2)H"”=3

and hence the unit vector in this direction is%(l, 2, —2). Since F, is in the direction of
this unit vector and has magnitude 6 it can be written F, = 6(%,3, —3) = (2,4, —4).

Similarly for F;, the unit vector is%(3, —4,0) and hence F; = (6, —8, 0). The result-
ant force is obtained by vector addition.

F=F +F,+F,=(,11+@2,4 -4 +(,-8,0=(, -3, -3)

Clearly to make the resultant force zero, the additional force (—9, 3, 3) must be
imposed on the particle.

Two geostationary satellites have known positions (0, 0, /) and (0, A, H) relative to a
fixed set of axes on the Earth’s surface (which is assumed flat, with the x and y axes
lying on the surface and the z axis vertical). Radar signals measure the distance of a
ship from the satellites. Find the position of the ship relative to the given axes.

Figure 4.21 illustrates the situation described, with R (a, b, 0) describing the position of
the ship and P and Q the positions of the satellites.

The radar signals measure PR and QR, which are denoted by p and g respectively.
The vectors

PR = OR — OP = (a,b,0) = (0,0, h) = (a, b, —h)
QR =OR — 0Q = (a,b,0) — (0,A, H) = (a, b — A, —H)

Q(0,A, H)

S N

R(a, b, 0)
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Comment

(0] X X

Figure 4.22 Argand
diagram representation
of z =x+ jy.

Figure 4.23

(a) Addition of
complex numbers.
(b) Subtraction of
complex numbers.

are calculated by the triangle law. The lengths of the two vectors are
P=|PREP=+b0+ 1 and ¢ =|QRF=a+ (b— AP+ H?
Subtracting gives
PP —q¢ =AQ2b— A + h — H?
and hence
b=(p*—q¢ — W+ H + A)RA
Having calculated b then a can be calculated from
a=+p*— b — ")

Note the ambiguity in sign; clearly it will need to be known on which side of the y axis
the ship is lying.

In practice the axes will need to be transformed to standard latitude and longitude and
the curvature of the Earth will need to be taken into consideration.

Complex numbers as vectors

We saw in the previous chapter that a complex number z = x + jy can be represented
geometrically by the point P in the Argand diagram, as illustrated in Figure 4.22.
We could equally well represent the point P by the vector OP. Hence we can express
the complex number z as a two-dimensional vector

;=0P

With this interpretation of a complex number we can use the parallelogram rule to
represent the addition and subtraction of complex numbers geometrically, as illustrated
in Figures 4.23(a, b).

Piz;=2,+2)
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Example 4.15

Solution

Figure 4.24
Square of
Example 4.15.

Example 4.16

Solution

[0}

Al +j5)

KN

Figure 4.25
Square of
Example 4.16.

D

A square is formed in the first and second quadrant with OP as one side of the square
and OP = (1, 2). Find the coordinates of the other two vertices of the square.

The situation is illustrated in Figure 4.24. Using the complex form OF =1+ 2j the
side OQ is obtained by rotating OP through 7/2 radians; then

00 =j(1 +2j) = —2 +j

The fourth point R is found by observing that OR is the vector sum of OP and 0Q,
and hence

OR=0P +00=—-1+j3
The four coordinates are therefore

0,0, (1,2), (=2, 1)and (—1, 3)

M is the centre of a square with vertices A, B, C and D taken anticlockwise in that
order. If, in the Argand diagram, M and A are represented by the complex numbers
—2 + jand 1 + j5 respectively, find the complex numbers represented by the vertices
B, C and D.

Applying the triangle law for addition of vectors of Figure 4.25 gives
MA = MO + OA
= OA — OM
=1 +j5)—(=2+)
=3+ j4
Since ABCD is a square,
MA = MB = MC = MD
ZAMB = /BMC = ZCMD = /DMA =1rx

Remembering that multiplying a complex number by j rotates it through%n’ radians in
an anticlockwise direction, we have

MB = jMA =j3 +j4) = —4 +j3
giving

—_—  —

OB=OM+MB=(-2+j)+(-4+i3)=—-6+j4

Likewise
MC=MB=j(—4+j3)=-3—j
giving

OC=0M+ MC = -5 —j3



250 VECTOR ALGEBRA

12

13

14

15

16

17

and
MD = jMC = j(—3 — j4) = 4 — j3
giving

OD=0M+MD =2 -2

Thus the vertices B, C and D are represented by the complex numbers —6 + j4, —5

— j3 and 2 — j2 respectively.

4.2.7 Exercises

Check your answers using MATLAB whenever possible.

Givena = (1,1,0),b = (2,2, 1) and ¢ = (0, 1, 1),
evaluate

@a+b ®ya+thb+2 (c)b—2a
@ |a| (e |b] ) la —b|
(e) a (h) b

If the position vectors of the points P and Q are
i + 3 — Tk and 5 — 2j + 4k respectively, find
PQ and determine its length and direction cosines.

A particle P is acted upon by forces (measured
in newtons) F, = 3i — 2j + 5k, F, = —i +

7 — 3k, Fy;=5i—j+ 4k and F, = —2j + 3k.
Determine the magnitude and direction of the
resultant force acting on P.

Ifa=3i—2+k,b=—-2i+5 +4k,c = —4i
+j — 2k andd = 2i — j + 4k, determine «, B
and vy such that

d=aa+ Bb+ yc

Prove that the vectors 2i — 4j — k, 3i + 2j — 2k
and 5i — 2j — 3k can form the sides of a triangle.
Find the lengths of each side of the triangle and
show that it is right-angled.

Find the components of the vector @ of magnitude
2 units which makes angles 60°, 60° and 135° with
axes Ox, Oy, Oz respectively.

The points A, B and C have coordinates (1, 2, 2),
(7,2, 1) and (2, 4, 1) relative to rectangular
coordinate axes. Find:

18

19

20

21

(a) the vectors ES) and A—C>

(b) |AB - 3AC]|

(c) the unit vector in the direction of ﬁ - 3A_C>
(d) the lengths of the vectors HS) and R

(e) the vector m where M is the midpoint of BC.

In the x—y plane AB = (1, —2) and B is the point

with coordinates (2, 2). Find the coordinates of the

point A. The point C has coordinates (3, 2); find D
— —

so that AB = CD.

Given the points P(1, —3, 4), Q(2,_2), 1) .

and R(3, 7, —2), find the vectors PQ and QR.
Show that P, Q and R lie on a straight line and
find the ratio PQ: QR.

Relative to a landing stage, the position vectors in

kilometres of two boats A and B at noon are
3i+j and i—2j

respectively. The velocities of A and B, which are
constant and in kilometres per hour, are

10i + 245 and 24i + 32j

Find the distance between the boats ¢ hours after
noon and find the time at which this distance is a
minimum.

If the complex numbers z;, z, and z; are represented
on the Argand diagram by the points P,, P, and P,
respectively and

—> — — —
OP, = 2jOP, and OP, = 2jP,P,

prove that P; is the foot of the perpendicular from O
onto the line P,P,.
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ABCD is a square, lettered anticlockwise, on an
Argand diagram, with A representing 3 + j2 and B
representing —1 + j4. Show that C lies on the real
axis and find the complex number represented by
D and the length of AB.

26

A telegraph pole OP has three wires connected to
it at P. The other ends of the wires are connected
to houses at A, B and C. Axes are set up as shown
in Figure 4.27. The points relative to these axes,
with distances in metres, are OP = 8k,

251

—> —
OA = 20j + 6k, OB = —i — 18j + 10k and
OC = —22i + 3j + 7k. The tension in each
wire is 900 N. Find the total force acting at P.

A tie cable at an angle of 45° is connected to

P and fixed in the ground. Where should the
ground fixing be placed, and what is the tension
required to ensure a zero horizontal resultant
force at P?

23 A triangle has vertices A, B, C represented by
1 +j,2 — jand —1 respectively. Find the point
that is equidistant from A, B and C.

24 Given the triangle OAB, where O is the origin,
and denoting the midpoints of the opposite sides
as O', A’ and B’, show vectorially that the lines
0OO0’, AA’ and BB’ meet at a point. (Note that this
is the result that the medians of a triangle meet at
the centroid.)

25  Three weights W;, W, and W, hang in equilibrium
on the pulley system shown in Figure 4.26. The c
pulleys are considered to be smooth and the forces
add by the rules of vector addition. Calculate 6 and
¢, the angles the ropes make with the horizontal.

Tie cable

7
Wl W2 x 4

Figure 4.26 Pulley system in Question 25. Figure 4.27 The telegraph pole of Question 26.

4.2.8 The scalar product

A natural idea in mathematics (explored in Chapter 1) is not only to add quantities but
also to multiply them together. The concept of multiplication of vectors translates into a
useful tool for many engineering applications, with two different products of vectors —
the ‘scalar’ and ‘vector’ products — turning out to be particularly important.

The determination of a component of a vector is a basic procedure in analysing many
physical problems. For the vector a shown in Figure 4.28 the component of a in the
direction of OP is just ON = |a |cos #. The component is relevant in the physical context
of work done by a force. Suppose the point of application, O, of a constant force F is
moved along the vector a from O to the point A, as in Figure 4.29. The component of F
in the a direction is | F |cos §, and O is moved a distance |a|. The work done is defined
as the product of the distance moved by the point of application and the component of
the force in this direction. It is thus given by

Figure 4.28
The component of a
in the direction OP is

ON = |a |cos0.

work done = |F||a| cos6
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0
O a A

Figure 4.29

The work done by a
constant force F with
point of application
moved from O to A

is | F||a|cos 6.

04 A
a

Figure 4.30

Cosine rule for a

triangle; equivalence

of the geometrical and

component definitions

of the scalar product.

The definition of the scalar product in geometrical terms takes the form of this
expression for the work done by a force. Again there is an equivalent component
definition, and both are now presented.

Definition

The scalar (or dot or inner) product of two vectors a = (a,, a,, a;) and b = (b,, b,, b;)
is defined as follows:

In components

a-b=ab, + ab, + asb, (4.2a)

Geometrically
a-b=|a||b|cosh, where 6 (0 =< 0 < 7) is the angle between the two vectors

Both definitions prove to be useful in different contexts, but to establish the basic rules
the component definition is the simpler. The equivalence of the two definitions can
easily be established from the cosine rule for a triangle. Using Figure 4.30 the cosine
rule (2.16) states

AB? = OA” + OB? — 2(OA)(OB) cos 6
which in appropriate vector or component notation gives
(a, — b)* + (a, — b)* + (a; — by)* =(a? + a3 +a}) + (b3 + b} + b})
—2|a| |b|cosO
Thus expanding the left-hand side gives
a? = 2a,b; + b3 + a3 — 2a,b, + b3 + a3 — 2a;b; + b}

=42 +b} + a3 + b} + a3 + b3 — 2|a||b|cosd

and hence

a-b=ab, + ab, + ab; = |a||b|cosb (4.2b)

Two important points to note are: (i) the scalar product of two vectors gives a number;
(i) the scalar product is only defined as the product of two vectors and not between
any other two quantities. For this reason, the presence of the dot () in @ - b is essential
between the two vectors.

Basic rules and properties

The basic rules are now very straightforward to establish.
(a) Commutative law

a-b=>b-a
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This rule follows immediately from the component definition (4.2a), since interchan-
ging a; and b; does not make any difference to the products. The rule says that ‘order does
not matter’.

(b) Associative law

The idea of associativity involves the product of three vectors. Since a - b is a scalar, it
cannot be dotted with a third vector, so the idea of associativity is not applicable here
and a - b - ¢ is not defined.

(c) Distributive law for products with a scalar A
a-(Ab) = (Aa)-b = Aa-b)

These results follow directly from the component definition (4.2a). The implication is
that scalars can be multiplied out in the normal manner.

(d) Distributive law over addition
a-(b+c)=a-b+a-c

The proof is straightforward, since
a-b+c)=a(b, +c)+ ayb, + ¢c,) + ay(by + )
= (a,b, + a,b, + asb;) + (a,c, + a,c, + aycy)
=a-b+ta-c

Thus the normal rules of algebra apply, and brackets can be multiplied out in the
usual way.

(e) Powers of a
One simple point to note is that

a-a= al +ad}+a3=|al||a|cos0 = |af
in agreement with Section 4.2.5. This expression is written a> = a -a and, where there
is no ambiguity, a®> = a” is also used. No other powers of vectors can be constructed,

since, as in (b) above, scalar products of more than two vectors do not exist. For the
standard unit vectors, #, j and k,

2=ii=1 jP=jj=1 KB=kk=1 4.3)

(f) Perpendicular vectors
It is clear from (4.2b) that if @ and b are perpendicular (orthogonal) then cosf =
cos %n = 0, and hence a-b = 0, or in component notation

a-b=ab, + ab, + ab; =0
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Example 4.17

However, the other way round, @ -b = 0, does not imply that a and b are perpendicular.
There are three possibilities:

cithera=0 or b=0 or 6=37

It is only when the first two possibilities have been dismissed that perpendicularity can
be deduced.
The commonest mistake is to deduce from

a-b=a-c

that b = ¢. This is only one of three possible solutions — the other two being @ = 0 and
a perpendicular to b — ¢. The rule to follow is that you cannot cancel vectors in the
same way as scalars.

Since the unit vectors i, j and k are mutually perpendicular,

i j=jk=k-i=0 4.4)
Using the distributive law over addition, we obtain using (4.3) and (4.4)
(ay, ay, a3) - (by, by, by) = (aji + a,j + azk)-(bji + byj + bsk)
=abi-i+aby-j+ abji-k+ abj-i+ ab,j-j
+ a,byj-k + asb\k-i + asbk-j + asbsk-k
=a,b, + a,b, + a;b;s

which is consistent with the component definition of a scalar product.

Perpendicularity is a very important idea, which is used a great deal in both math-
ematics and engineering. Pressure acts on a surface in a direction perpendicular to the
surface, so that the force per unit area is given by pit, where p is the pressure and 7 is the
unit normal. To perform many calculations, we must be able to find a vector that is per-
pendicular to another vector. We shall also see that many matrix methods rely on being
able to construct a set of mutually orthogonal vectors. Such constructions not only are
of theoretical interest, but form the basis of many practical numerical methods used
in engineering (see Chapter 6 of the companion text Advanced Modern Engineering
Mathematics). The whole of the study of Fourier series (considered in Chapter 12),
which is central to much of signal processing and is heavily used by electrical
engineers, is based on constructing functions that are orthogonal.

In MATLAB the scalar product of two vectors @ and b is given by the command
dot (a,b).

Given the vectorsa = (1, —1,2),b = (—2,0, 2) and ¢ = (3, 2, 1), evaluate
(a) a-c (b) b-c () (@+b)-c
(d) a-(2b + 3c¢) (e) (a-b)c
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Solution (a) ac=(1X3)+ (-1 X2)+2X1)=3
b))y bc=(—2X3)+(OX2)+2X1)=—-4
(c) @+b)=(,-1,2) +(—2,0,2) = (—1, —1,4) so that
(@+b)yc=(—1,-1,4-3,2,1)=-3-2+4=-1
(note that (@ + b)-¢c =a-c +b-c)
(d) a-2b+3c)=(1,—-1,2)-[(—4,0,4) + (9,6, 3)]
=(1,-1,2)-(5,6,7)=(5—-6+14) =13
(note that 2(a-b) + 3(a-c) =4 +9 = 13)
(e) (a-b)ye =1[(1,-1,2)-(—2,0,2)1(3,2, 1) = [-2 + 0+ 4]3,2, 1)
=23,2,1) =(6,4,2)

(note that @ - b is a scalar, so (a-b)c is a vector parallel or antiparallel to ¢)

Check that in MATLAB the commands

a=[1-12]; b=1[-202]; ¢c=[3 2 1];
dot(a,c), dot(b,c), dot(a + b,c), dot(a,2*b + 3*c),
dot (a,b) *c

return the answers given in this example.

Example 4.18 Find the angle between the vectors a = (1,2, 3) and b = (2, 0, 4).

Solution By definition
a-b=la||b|cosd = a\b, + a,b, + asb,
We have in the right-hand side
(1,2,3)-2,0,4H)=2+0+12=14
Also
[(1,2,3)] = V(1> + 2% + 3% =14
and
1(2,0,4)] = V(2> + 0° + 4% =20
Thus, from the definition of the scalar product,
14 = (14)V(20) cos 6
giving

6 =cos '\
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Example 4.19

Solution

Example 4.20

Solution

Example 4.21

Solution

Figure 4.31
The altitudes of a

triangle meet in a
point (Example 4.21).

Example 4.22

Givena = (1,0, 1) and b = (0, 1, 0), show that @-b = 0, and interpret this result.

a-b=(1,0,1):-(0,1,00=0

Since |a| # 0 and |b| # 0, the two vectors are perpendicular. We can see this result
geometrically, since a lies in the x—z plane and b is parallel to the y axis.

The three vectors
a=(,1,1), b=(@3,2,-3) and ¢c=(—1,4,—1)

are given. Show that @ -b = a-c and interpret the result.

Now a-b=1X3+1X2—-1X3=2
and a-c=1X(—D+1X4+1X((=1)=2

so the two scalar products are clearly equal. Certainly b # ¢ since they are given to be
unequal and a is non-zero, so the conclusion from

a-b—¢c)=0

is that the vectors @ and (b — ¢) = (4, —2, —2) are perpendicular.

In a triangle ABC show that the perpendiculars from the vertices to the opposite sides
intersect in a point.

Let the perpendiculars AD El)d BE meet in O, as indicated in Figure 4.31, and choose
O to be the origin. Define OA = a, OB = b and OC = ¢. Then

AD perpendicular to BC impliesa-(b — ¢) = 0
BE perpendicular to AC implies b- (¢ — a) =0
Hence, adding,
ab—a-c+b-c—b-a=0
o)
b-c—ac=c-b—a)=0

This statement implies that b — a is perpendicular to ¢ or AB is perpendicular to CF,
as required. The case b — a = 0 is dismissed, since then the triangle would collapse.
The case ¢ = 0 implies that C is at O; the triangle is then right-angled and the result
is trivial.

Find the work done by the force F = (3, —2, 5) in moving a particle from a point P to
a point Q having position vectors (1, 4, —1) and (—2, 3, 1) respectively.
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Solution
P : Q
(0]
Figure 4.32
Triangle law for
Example 4.22.

Example 4.23

Solution

Applying the triangle law to Figure 4.32, we have the displacement of the particle
given by

r=PQ =PO0 + 0Q =0Q — OP
=(-2,3,1)— (1,4, -1)=(-3,—-1,2)
Then the work done by the force F is
F-r=(@3,-2,5-(-3-1,2)=-9+2+ 10

= 3 units

The component of a vector in a given direction was discussed at the start of this sec-
tion, and, as indicated in Figure 4.28, the component of F in the a direction is |F |cos 6.
Taking d to be the unit vector in the a direction,

F-a=|F||d|cos® = |F|cos6

= the component of F in the a direction

Find the component of the vector F = (2, —1, 3) in
(a) the i direction
(b) the direction (3, 3, 3)

(c) the direction (4, 2, —1)

(a) The direction i is represented by the vector (1, 0, 0), so the component of F in the
i direction is
F-(1,0,0)=(2,—-1,3)-(1,0,0) =2

(note how this result just picks out the x component and agrees with the usual idea of
a component).

(b) Since V(3 +5 + %) = 1, the vector (3, %, %) is a unit vector. Thus the component
of F in the direction (%, %, %) is
1 2 2y _ 2 2 —
F-G535=5-5+2=2

(c) Since V(16 + 4 + 1) # 1, the vector (4, 2, —1) is not a unit vector. Therefore we
must first compute its magnitude as

V@ + 20+ 19 =121

indicating that a unit vector in the direction of (4, 2, —1) is (4, 2, — 1)/\/21. Thus the
component of F in the direction of (4, 2, —1) is

F-(4,2, —DAN21 = 3721
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27

28

29

30

31

32
33

34

35

4.2.9 Exercises

Where appropriate check your answers using MATLAB.

Given thatu = (4,0, —=2),v = (3, 1, — 1),
w=(2,1,6)ands = (1, 4, 1), evaluate

(b) v-s
d) (v-s)id

(@) u-v
(c) w

(&) @-w)v-s) ) (w-iy + (w-9)k

Given u, v, w and s as for Question 27, find
(a) the angle between u and w;
(b) the angle between v and s;

(c) the value of A for which the vectors u + Ak
and v — Ai are perpendicular;

(d) the value of u for which the vectors w + ui
and s — ui are perpendicular.

Given the vectors u = (1, 0, 0),v = (1, 1, 0),
w=(l,1,1)ands = (2, 1, 2), find a, B, 7y that
satisfy s = au + Bv + yw. If u’ = (1, —1, 0),
v' =(0,1,—1)and w' = (0, 0, 1) show that

s=(6-wu +-vy +(s-ww
Given |a| = 3,|b| =2anda-b = 5 find

|a + 2b| and |3a -b | Find the angle between
the vectors a + 2b and 3a — b.

Find the work done by the force F = (=2, —1, 3)
in moving a particle from the point P to the

point Q having position vectors (—1, 2, 3) and

(1, =3, 4) respectively.

Find the resolved part in the direction of the vector
(3,2, 1) of a force of 5 units acting in the direction
of the vector (2, —3, 1).

Find the value of 7 that makes the angle between
the two vectorsa = (3, 1,0)and b = (1,0, 1)
equal to 45°.

For any four points A, B, C and D in space, prove
that

—_— — — —> — —
(DA-BC) + (DB-CA) + (DC-AB) = 0

If (¢ —%a)~a = (c —%b)-b = 0, prove that the

vector ¢ — %(a + b) is perpendicular to a — b.

36

37

38

39

40

Prove that the line joining the points (2, 3, 4) and
(1, 2, 3) is perpendicular to the line joining the
points (1, 0, 2) and (2, 3, —2).

Show that the diagonals of a rhombus intersect at right
angles. If one diagonal is twice the length of the other,
show that the diagonals have length 2a/V5 and 4a/V5,
where a is the length of the side of the rhombus.

Find the equation of a circular cylinder with the
origin on the axis of the cylinder, the unit vector a
along the axis and radius R.

A cube has corners with coordinates (0, 0, 0), (1, 0, 0),
0, 1,0), (1, 1,0, (0,0, 1), (1,0, 1), (0, 1, 1) and
(1, 1, 1). Find the vectors representing the diagonals
of the cube and hence find the length of the
diagonals and the angle between the diagonals.

A lifeboat hangs from a davit, as shown in

Figure 4.33, with the x direction, the vertical

part of the davit and the arm of the davit being
mutually perpendicular. The rope is fastened to

the deck at a distance X from the davit. It is

known that the maximum force in the x direction
that the davit can withstand is 200 N. If the weight
supported is 500N and the pulley system is a single
loop so that the tension is 250 N, then determine the
maximum value that X can take.

Figure 4.33 Davit in Question 40.
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4.2.10 The vector product

Figure 4.34
Vector product a X b,
right-hand rule.

The vector or cross product was developed during the nineteenth century, its main
practical use being to define the moment of a force in three dimensions. It is generally only
in three dimensions that the vector product is used. The adaptation for two-dimensional
vectors is of restricted scope, since for two-dimensional problems, where all vectors
are confined to a plane, the direction of the vector product is always perpendicular to
that plane.

Definition

Given two vectors a and b, we define the vector product geometrically as
aXxXb=|al||blsin6n (4.5)

where 6 is the angle between @ and b (0 = 6 = 1), and 7 is the unit vector perpendicu-
lar to both @ and b such that a, b, 7i form a right-handed set — see Figure 4.34 and the
definition at the beginning of Section 4.2.1.

a

It is important to recognize that the vector product of two vectors is itself a vector.
The alternative notation @ A b is also sometimes used to denote the vector product, but
this is less common since the similar wedge symbol A is also used for other purposes
(see Section 6.4.2).

There are wide-ranging applications of the vector product.

Motion of a charged particle in a magnetic field

e If a charged particle has velocity v and moves in a magnetic field H then the
particle experiences a force perpendicular to both v and H, which is proportional
tov X H. It is this force that is used to direct the beam in a television tube.

e Similarly a wire moving with velocity v in a magnetic field H produces a current
proportional to v X H (see Figure 4.35), thus converting mechanical energy into
electric current, and provides the principle of the dynamo.

e For an electric motor the idea depends on the observation that an electric current
C in a wire that lies in a magnetic field H produces a mechanical force propor-
tional to C X H; again see Figure 4.35. Thus electrical energy is converted to a
mechanical force.
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Figure 4.35

In a magnetic field

H, (i) motion of the
wire in the v direction
creates a current in

the H X v (dynamo),
(ii) a current C causes
motion v in the C X H
direction (electric
motor).

Figure 4.36
Moment of a force.

=

Moment of a force

The moment or torque of a force F provides the classical application of the vector prod-
uct in a mechanical context. Although moments are easy to define in two dimensions,
the extension to three dimensions is not so easy. In vector notation, however, if the force
passes through the point P and OP = r, as illustrated in Figure 4.36, then the moment
M of the force about O is simply defined as

M =r X F =|r||F|sinfia= OQ|F|a (4.6)

This is a vector in the direction of the normal 72, and moments add by the usual paral-
lelogram law.

Angular velocity of a rigid body

A further application of the vector product relates to rotating bodies. Consider a
rigid body rotating with angular speed w (in rads™') about a fixed axis LM that passes
through a fixed point O, as illustrated in Figure 4.37. A point P of the rigid body having
position vector r relative to O will move in a circular path whose plane is perpendicular
to OM and whose centre N is on OM. If NQ is a fixed direction and the angle QNP is
equal to x then

dy

the magnitude of angular velocity = o =
t
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Figure 4.37
Angular velocity of a
rigid body.

Figure 4.38
Representation of a
parallelogram.

O
L

(Note that we have used here the idea of a derivative, which will be introduced later in
Chapter 8.) The velocity v of P will be in the direction of the tangent shown and will
have magnitude

v= NPd—Z = NPw
dr

If we define o to be a vector of magnitude w and having direction along the axis of
rotation, in the sense in which the rotation would drive a right-handed screw, then

v=w Xr 4.7)

correctly defines the velocity of P in both magnitude and direction. This vector w is
called the angular velocity of the rigid body.

Area of parallelogram and a triangle

Geometrically we have from Figure 4.38 that the area of a parallelogram ABCD is
given by

area = h|AB| = |ADJsin6| AB| = |AD X AB|

Note also that the area of the triangle ABD is 1|AD X AB
the result

, which corresponds to

area of triangle ABD = 1(AD)(AB)sin6

We now examine the properties of vector products in order to determine whether or
not the usual laws of algebra apply.

Basic properties
(a) Anti-commutative law
axXb=—bXa)
This follows directly from the right-handedness of the set in the geometrical definition
(4.5), since i1 changes direction when the order of multiplication is reversed. Thus the

vector product does not commute, but rather anti-commutes, unlike the multiplication
of scalars or the scalar product of two vectors. Therefore the order of multiplication
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matters when using the vector product. For example, it is important that the moment of
a force is calculated as M = r X F and not F X r.

(b) Non-associative multiplication
Since the vector product of two vectors is a vector, we can take the vector product with
a third vector, and associativity can be tested. It turns out to fail in general, and

aX (b Xc)#@Xb)Xc

except in special cases, such as when a = 0. This can be seen to be the case from geo-
metrical considerations using the definition (4.5). The vector b X ¢ is perpendicular
to both b and ¢, and is thus perpendicular to the plane containing b and ¢. Also, by
definition, a X (b X ¢) is perpendicular to b X ¢, and is therefore in the plane of b and
c. Similarly, (@ X b) X c is in the plane of a and b. Hence, in general, @ X (b X ¢) and
(a X b) X ¢ are different vectors.

Since the associative law does not hold in general, we never write @ X b X ¢, since
it is ambiguous. Care must be taken to maintain the correct order and thus brackets must
be inserted when more than two vectors are involved in a vector product.

(c) Distributive law over multiplication by a scalar
The definition (4.5) shows trivially that

a X (Ab) = Ma X b) = (Aa) X b
and the usual algebraic rule applies.

(d) Distributive law over addition
aX b +c)=(@Xb)+ (aXc)

This law holds for the vector product. It can be proved geometrically using the definition
(4.5). The proof, however, is rather protracted and is omitted here.

(e) Parallel vectors

It is obvious from the definition (4.5) that if @ and b are parallel or antiparallel then
6 = 0 orm, so thata X b = 0, and this includes the case a X a = 0. We note, however,
that if @ X b = 0 then we have three possible cases: eithera = 0 or b = 0 or a and
b are parallel. As with the scalar product, if we have @ X b = a X ¢ then we cannot
deduce that b = ¢. We first have to show that @ # 0 and that a is not parallel to b — c.

(f) Cartesian form
From the definition (4.5), it clearly follows that the three unit vectors, i, j and k, parallel
to the coordinate axes satisfy

iXi=jXj=kXk=0

ixXj=k jXk=i kxi=j (4.8)
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Figure 4.39

Gives the three
components as

bC — ¢B, cA — aC,

aB — DA.

Example 4.24

Note the cyclic order of these latter equations. Using these results, we can obtain the
cartesian or component form of the vector product. Taking

a=(a,a,a) = ai+ aj+ a;k
and
b = (b, by, by) = byji + b,j + b3k

then, using rules (c), (d) and (a),

aXb= (ai+ a,j+ ask) X (bji + b,j + bsk)
= a,b,(i X i)+ ab,(i Xj)+ abs@ X k) + ab,(j X i)+ a,b,(j XJ)
+ aby(j X k) + azb,(k X i) + asby(k X j) + asbs(k X k)
= a\b,k + a,by(—j) + a,b,(—k) + a,bii + asbj + asb,(—i)
so that
a X b = (a,b; — azby)i + (ash, — a\by)j + (a,b, — a,b))k 4.9)

The cartesian form (4.9) can be more easily remembered in its determinant form
(actually an accepted misuse of the determinant form)

i j k
a, az a & a 4
axb:al az a3:i _j +k
b, bs b, bs b, b,
by b, b
= (a,by — byay)i — (a,by — biay)j + (a\b, — biay)k (4.10)

This notation is so convenient that we use it here before formally introducing determi-
nants in the next chapter.

An alternative way to work out the cross product, which is easy to memorize, is to
write the vectors (a, b, ¢) and (A, B, C) twice and read off the components by taking
the products as indicated in Figure 4.39.

In MATLAB the vector product of two vectors @ and b is given by the command
cross(a,b).

Given the vectorsa = (2, 1,0), b = (2, —1, 1) and ¢ = (0, 1, 1), evaluate
(@) a Xb (b) (@aXb)Xc (c)(@ch— (b-ca
(d b Xc e axX®mxXc) ) (@ach—(a-b)
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Solution i j k
1 0 2 0 2 1
(a)axb=[2 1 0|=i —j +k =(1, =2, —4)
-1 1 2 1 2 -
2 -1 1
i j k
/ 2 -4 1 —4 1 =2
by (@axbyxe=|1 =2 -4|=i —j +k =2, -L1D
1 1 0 1
0 1 1

c)a-¢c=2,1,00-0,1,)=1,b-¢c=2,—1,1)-(0,1, 1) = 0 and hence (a-c)b —
b-c)a=1b —0a = (2, —1,1)
(Note that (b) and (c) give the same result.)

i J k
-1 1 21 2 -1
(d bxe=2 -1 1|=i -J +k =(-2,-22
11 101 0 1 ( )
0 1 1
i J k
10 2 0 2 1
e ax®XxXe)=|2 1 0l=i —j +k =(2,-4,-2
-2 2 -2 2 -2 2

-2 -2 2

(Note that (b) and (e) do not give the same result and the cross product is not
associative.)

fYa-¢c=2,1,00-0,1,)=1,a -b=2,1,0)-(2,—1,1) =3 and hence (a-¢)b —
(a-b)c =1b — 3¢ = (2, —4, —2)
(Note that (e) and (f) give the same result.)

Check that in MATLAB the commands

a=1[210]; b=1[2 -1 1]1; ¢c= 1[0 1 1];
cross(a,b)
cross (cross(a,b),c)

return the answers to (a) and (b).

Example 4.25 Find a unit vector perpendicular to the plane of the vectorsa = (2, —3, 1) and b = (1,2, —4).

Solution A vector perpendicular to the plane of the two vectors is the vector product
i j k
axb=2 =3 1/=70,9,7)
1 2 4
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Example 4.26

Solution

Example 4.27

Solution

Figure 4.40

(a) Tetrahedron

for Example 4.27;
(b) triangle from (a).

whose modulus is
la X b| = (100 + 81 + 49) =230
Hence a unit vector perpendicular to the plane of @ and b is (101230, 9N230, 7N230).

Find the area of the triangle having vertices at P(1, 3, 2), Q(—2, 1, 3) and R(3, —2, —1).

We have seen, in Fi_gl)lre 4.38 that the area of the paral]e]ogﬂn fog)ed with sides PQ
and PR is [PQ X PR, so the area of the triangle PQR is +|PQ X PR|. Now

PO=(—2—-1,1-3,3—-2)=(=3,-21)

and
PR=3-1,-2-3,-1-2)=(2, -5, -3)
so that
i j k
PQxPR=|-3 —2 1|=(1-7,19)
2 -5 -3

Hence the area of the triangle PQR is
11PQ x PR| = 1V(121 + 49 + 361) = 1V531 ~ 11.52 square units

Four vectors are constructed corresponding to the four faces of a tetrahedron. The mag-
nitude of a vector is equal to the area of the corresponding face and its direction is the
outward perpendicular to the face, as shown in Figure 4.40. Show that the sum of the
four vectors is zero.

In Figure 4.40(a) let AB = b, AC = ¢ and AD = d. The outward perpendicular to trian-
gle ABD is parallel to

n=ADXAB=dXb

(@ D (b)
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and the unit vector in the outward normal direction is

dxb
|d x b

h=

From Figure 4.40(b) the area of triangle ABD follows from the definition of cross
product as

area = T AD(AB sin 0) = +|d X b|

so the vector we require is
v1=area><ﬁ=%d><b

In a similar manner for triangles ACB and ADC the vectors are
v,=2bXc¢ and vy;=+cXd

For the fourth face BCD the appropriate vector is
v,=1BDXBC=1@—-b)X(c—b)=L@dxc—dXb—bXc)

Adding the four vectors v,, v,, v; and v, together gives the zero vector.

Example 4.28 A force of 4 units acts through the point P(2, 3, —5) in the direction of the vector
(4, 5, —2). Find its moment about the point A(1, 2, —3). See Figure 4.41.
What are the moments of the force about axes through A parallel to the coordinate
axes?

Solution  To express the force in vector form we first need the unit vector in the direction of the
force.

4i j — 2k 1
Ai+5j-2k 1 4,5, -2)
V16 +25+4) 45

Figure 4.41

Moment of the force
F about the point A in
Example 4.28.

P(2,3,-5)

A(1,2,-3)
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Example 4.29

Solution

Example 4.30

Since the force F has a magnitude of 4 units

4
F=——-(4)5 -2
\/45( )

The position vector of P relative to A is
AP =(1,1,-2)

Thus from (4.6) the moment M of the force about A is

i j k
. 4
M=APxF=—1 1 =2
V45
4 5 =2

= (3245, —24N45, 4N45)

The moments about axes through A parallel to the coordinate axes are 32145, —24/
V45 and 4/V45.

A rigid body is rotating with an angular velocity of Srads~' about an axis in the direc-
tion of the vector (1, 3, —2) and passing through the point A(2, 3, —1). Find the linear
velocity of the point P(—2, 3, 1) of the body.

1
A unit vector in the direction of the axis of rotation is —— (1, 3, =2). Thus the angular

V14
velocity vector of the rigid body is
o = (5N14)(1, 3, —2)
The position vector of P relative to A is

AP=(—2-23-3,14+1)=(—4,0,2)

Thus from (4.7) the linear velocity of P is

i j k
N 5
vV=wXAP=——| 1 3 =2
V14
-4 0 2

= (30/14, 30114, 60/14)

A trapdoor is raised and lowered by a rope attached to one of its corners. The rope is
pulled via a pulley fixed to a point A, 50 cm above the hinge, as shown in Figure 4.42.
If the trapdoor is uniform and of weight 20 N, what is the tension required to lift the
door?
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Figure 4.42
Trapdoor in
Example 4.30.

Solution

From the data given we can calculate various vectors immediately.
OA = (0, 30,50), OB = (60, —50,0), OH = (0, 30, 0)
If M is the midpoint of the trapdoor then
OM = (30, 0, 0)

The forces acting are the tension 7 in the rope along BA, the weight W through M in
the —z direction and reactions R and S at the hinges. Now

AB = OB — OA = (60, —80, —50)
so that |AB| = 112, and hence
T = —T(60, —80, —50)/112

Taking moments about the hinge H, we first note that there is no moment of the reaction
at H. For the remaining forces

M,=HM X W+ HB X T + HK X R
= (30, —30,0) X (0,0, —20) + (60, —80,0) X (60, —80, —50)(—7/112) + HK X R
= (600, 600, 0) + T(—35.8, —26.8, 0) + HK X R

Since we requi_rg the moment abou_t) the y axis, we take the scalar product of M and
J- The vector HK is along j, soj - (HK X R) must be zero. Thus the j component of M,
must be zero as the trapdoor just opens; that is,

0 =600 — 26.8T
SO

T=224N
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41

42

43

44

45

46

47

4.2.11 Exercises

Check your answers using MATLAB whenever possible.

Givenp = (1,1,1),g = (0, —1,2)and r = (2,2, 1),
evaluate

(@ pXgq (b)y pXr
(© rxgq @ (p Xr)-q
(e q-(r Xp) ) (p Xr)Xgq

The vectorsa = (1, —1,2),b = (0, 1, 3),
¢ =(—2,2, —4) are given.

(a) Evaluatea X band b X ¢
(b) Write down the vectors b X a and ¢ X b

(c) Show that ¢ X a = 0 and explain this result.
Evaluate 2j X (3i — 4k) and (i + 2j) X k.

Given the vectorsa = (=3, —1, —=2)and b =
(2,3, 1), find |a@ X b| and (@ + 2b) X (2a — b).

Leta =(1,2,3),b=(2,1,4andc = (1, —1, 2).
Calculate (@ X b) X canda X (b X ¢) and verify
that these two vectors are not equal.

Show that the area of the triangle ABC in
. -t
Figure 4.43 is 5| AB X AC|. Show that
— — — — — —
AB X AC = BC X BA = CA X CB
and hence deduce the sine rule

sinA sinB sinC

a b c

A B
c

Figure 4.43 Sine rule: Section 2.6.1.

Prove that
(@ —>b) X (a+b)=2aXb)

and interpret geometrically.

48

49

50

51

52

53

The points A, B and C have coordinates (1, —1, 2),
(9, 0, 8) and (5, 0, 5) relative to rectangular cartesian
axes. Find

(a) the vectors E_’: and ﬁ;
(b) a unit vector perpendicular to the triangle ABC;
(c) the area of the triangle ABC.

Use the definitions of the scalar and vector products
to show that

la-b]> + |a X b| = a’b*

If @, b and ¢ are three vectors such that
a + b + ¢ =0, prove that

aXb=bXc=cXa

and interpret geometrically.

A rigid body is rotating with angular velocity
6rads™! about an axis in the direction of

the vector (3, —2, 1) and passing through the
point A(3, —2, 5). Find the linear velocity of
the point P(3, —2, 1) on the body.

A force of 4 units acts through the point
P(4, —1, 2) in the direction of the vector (2, —1, 4).
Find its moment about the point A(3, —1, 4).

The moment of a force F acting at a point P about

a point O is defined to be a vector M perpendicular
to the plane containing F and the point O such

that |M| = p|F|, where p is the perpendicular
distance from O to the line of action of r. Figure 4.44
illustrates such a force F. Show that the perpendicular
distance from O to the line of action

F

(0)
Figure 4.44 Moment of force F about O.
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54

515

of F is |r|sin6, where r is the position vector of
P. Hence deduce that M = r X F. Show that the
moment of F about O is the same for any point P
on the line of action of F.

Forces (1, 0, 0), (1, 2, 0) and (1, 2, 3) act
through the points (1, 1, 1), (0, 1, 1) and (0, 0, 1)
respectively:

(a) Find the moment of each force about the
origin.
(b) Find the moment of each force about the point

(1,1, 1.

(c) Find the total moment of the three forces
about the point (1, 1, 1).

Find a unit vector perpendicular to the plane of the
two vectors (2, —1, 1) and (3, 4, —1). What is the
sine of the angle between these two vectors?

Prove that the shortest distance of a point P from
the line through the points A and B is

56

A satellite is stationary at P(2, 5, 4) and a warning
signal is activated if any object comes within a
distance of 3 units. Determine whether a rocket
moving in a straight line passing through A(1, 5, 2)
and B(3, —1, 5) activates the warning signal.

The position vector r, with respect to a given origin
O, of a charged particle of mass m and charge e at

time ¢ is given by

E
r= (é + asin(a)t))i + acos(wt)j + ctk

where E, B, a and w are constants. The
corresponding velocity and acceleration are

E
v = (E +aw cos(a)t))i —awsin(wt)j + ck

f = —aw’ sin(wt)i — aw® cos(wt)j

For the case when B = Bk, show that the equation
of motion

|H)><H§| mf = e(Ej +v X B)
|E3)| is satisfied provided w is chosen suitably.
4.2.12 Triple products

In Example 4.24, products of several vectors were computed: the product (a X b)-c is
called the triple scalar product and the product (@ X b) X ¢ is called the triple vector

product.

Triple scalar product

The triple scalar product is of interest because of its geometrical interpretation. Looking

at Figure 4.45, we see that
a X b=|al||b|sinbk

= (area of the parallelogram OACB)k

Thus, by definition,

(a X b)-c = (area of OACB)k - ¢
= (area of OACB)|k||c|cos ¢
= (area of OACB)h (where £ is the height of the parallelepiped)

= volume of the parallelepiped

Considering (@ X b)-c to be the volume of the parallelepiped mounted on a, b, ¢ has

several useful consequences.
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Figure 4.45

Triple scalar product
as the volume of a
parallelepiped.

Example 4.31

Solution

(a) If two of the vectors a, b and ¢ are parallel then (@ X b)-¢ = 0. This follows imme-
diately since the parallelepiped collapses to a plane and has zero volume. In particular,

(@aXb)y-a=0 and (@Xb)-b=0

(b) If the three vectors are coplanar then (a X b)-c¢ = 0. The same reasoning as in (a)
gives this result.

(¢) If (@ X b)-¢ = 0theneithera = 0 orb = 0 or ¢ = 0 or two of the vectors are parallel
or the three vectors are coplanar.

(d) In the triple scalar product the dot-and the cross X can be interchanged:
(@aXb)y-c=a- (b Xc)

since it is easily checked that they measure the same volume mounted on a, b, c. If we
retain the same cyclic order of the three vectors then we obtain

a-(bXc)=b-(c Xa)=c-(aXb) 4.11)

(e) In cartesian form the scalar triple product can be written as the determinant

a a, a;
a- (b X c) = bl bz b3 (4 12)

G &6 &

= a,b,c; — a\bsc, — a,b,c; + a,bsc, + asb,c, — asbscy

Find A so thata = (2, —1,1),b = (1,2, —3) and ¢ = (3, A, 5) are coplanar.

None of these vectors are zero or parallel, so by property (b) the three vectors are
coplanar if (@ X b)-c¢ = 0. Now

axXb=(,775)
SO
(aXb)y-c=3+7TA+25

This will be zero, and the three vectors coplanar, when A = —4.
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Example 4.32 Ina _triangle OAB the sides OA =a and OB = b are given. Find the point P, with
¢ = OP, where the perpendicular bisectors of the two sides intersect. Hence prove that
the perpendicular bisectors of the sides of a triangle meet at a point.

Solution  Let k be the unit vector perpendicular to the plane of the triangle; the situation is illus-
trated in Figure 4.46.

Figure 4.46
Perpendicular
bisectors in
Example 4.32.

by

Now
OP =0A' + AP =1la+dk Xa
for some a, since the vector k X a is in the direction perpendicular to a. Similarly
— — —_— A
OP =OB’' +BP=1b+ Bk Xb
Subtracting these two equations
la+oakxa=1b+pkxb

Take the dot product of this equation with b, which eliminates the final term, since
b-(k X b) =0, and gives

1b-(b — a) = ab-(k X a)

Hence a has been computed in terms of the known data, so assuming b - (k X a)#0
— Ib-(b-a) .
OF = ta+ 0=

b-(k x a)

We now need to check that PQ is perpendicular to AB:
AB=0B-0A=b—a

and

Ib-(b—a) .

2b-(b—a) .

PQ=0Q - 0P =2L(a+b)—La— -
Q =0Q s(@a+b)—za bk x a)
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Example 4.33

Solution

Now take the dot product of these two vectors

Ib-(b - a) . Ib-(b—a) .
1p_ 22074 (b—a)=Lib(h—a)— 2" " Dp. =
[21) bk X a) k xa} (b-—a)y=1b-(b-a) ok X 8) b-(k xa)=0

Since neither W)) nor AB is zero, the two vectors must therefore be perpendicular.
Hence the three perpendicular bisectors of the sides of a triangle meet at a point.

Three non-zero, non-parallel and non-coplanar vectors a, b and ¢ are given. Three
further vectors are written in terms of @, b and ¢ as

A =aa+ Bb + yc
B=da+ B'b+vy'c
C=da+ B"b+ v

Find how the triple scalar product A- (B X C) is related toa - (b X c).

To find the result we use the facts that (i) the vector product of identical vectors is
zero and (ii) the triple scalar product is zero if two of the vectors in the product are the
same. Now

A-(BXC)=(aa+ Bb + yc)-[(a'a+ B'b + vy'c) X (&"a+ B'b + v'c)]
= (aa + Bb + yc)-[&'B'a X b + a'y'aXc+ B'ad'bXa
+ B'y'b X ¢+ y'dac Xa+y'B'cXb]
=(xa+ Bb + ye)-[(&'B" — B'&Ma X b+ By —v'B) Xc
+ @y'a — a'y")e X al
=vy@'B"—B'ad)c-aXb+ aB'yY —vyBYabXc
+ B —a'y)b-c Xa
= @b X aBy v+ BY'a — a'y) + Y@~ fa)]

The result can be written most conveniently in determinant form (see the next chapter,
Section 5.3) as

A-(BxC)= "1(a-b Xc)

”

R KR R

” 14

B
’ ﬁl
B

=R

Triple vector product

For the triple vector product we shall show in general that

(@aXb)yXc=(@ach— (b-ca 4.13)
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Example 4.34

Solution

as suggested in Example 4.24. We have from (4.9)
a X b = (a,b; — a;b,, asb, — a,bs, a\b, — ab,)
and hence
(@ X b) X ¢ = ((asb; — aybs)c5 — (a1b, — a,by)cs,
(a\b, — a,b))c, — (ab; — asb,)cs,
(a,b; — azby)c, — (asb, — a\by)c))
The first component of this vector is
ascsb, — bycsa, — byc,a, + axeob, = (a,c, + a,c, + ascy)b, — (bic, + byc, + bycs)a,
=(a-c)b, — (b-c)a,
Treating the second and third components similarly, we find
(@aXb)yXc={a-c)h,—(b-c)a,,(@c)b,— (b-c)a,, (a-c)b;— (b-c)a;)
=(@-¢c)b — (b-c)a
In a similar way we can show that

aXxX (b Xc)=(@-c)b — (a-b)c (4.14)

We can now see why the associativity of the vector product does not hold in general.
The vector in (4.13) is in the plane of b and a, while the vector in (4.14) is in the plane
of b and c; hence they are not in the same planes in general, as we inferred geometri-
cally (see Section 4.2.10). Consequently, in general

aX (bXc)#@Xb)Xc

so use of brackets is essential.

Ifa=@3,—-2,1),b=(—1,3,4)and ¢ = (2, 1, —3), confirm that
aX (b Xc)=(@-ch — (a-b)

i j k
bxc=|-1 3 4|=(-13,5-7)
21 3
i j k

ax(bxe)=| 3 =2 1/=(98 -11)
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Example 4.35

Solution

Example 4.36

Solution

(@-0)b — (a-b)c=[(3)(2) + (=2)(1) + ()(=II(—1, 3,4)
—[G)(—D + (=2)3) + (HAIZ, 1, —3)
=(—1,3,4) + 52,1, =3)
=(9,8, —11)
thus confirming the result

aX (bXc)=(@a-c)b — (a-b)

Verify thata X (b X ¢) # (a X b) X ¢ for the three vectorsa = (1,0, 0), b = (—1, 2, 0)
andc = (1,1, 1).

Evaluate the cross products in turn:
bXc=(—-1,2,0x{,1,1)=(2,1, =3)

and therefore
aXbXe)=(1,0,00%X(2,1,-3)=(0,3,1)

Similarly for the right-hand side:
aXxXb=(,00) %X (-1,2,00=1(0,0,2)

and hence
(@Xb)yxXc=1(0,0,2)X(1,1,1)=(—2,2,0)

Clearly for these three vectors a X (b X ¢) # (a X b) X c.

The vectors a, b and ¢ and the scalar p satisfy the equations
a-b=p and aXb=c

and a is not parallel to b. Solve for a in terms of the other quantities and give a geo-
metrical interpretation of the result.

First evaluate the cross product of the second equation with b:
bX(@Xb)y=>bXc
gives
(b-bya— (b-a)pb =b Xc
and hence, using @ -b = p and collecting the terms,
_pb+bxc
|bJ?

Since b X c is in the plane of @ and b, any vector in the plane can be written as a linear
combination of » and b X ¢. The expression for a gives the values of the coefficients in
the linear combination.
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57

58

59
60

61

62

63

4.2.13 Exercises

Check your answers using MATLAB whenever possible.

Find the volume of the parallelepiped whose edges
are represented by the vectors (2, —3, 4),
(1,3, -1),G, —L,2).

Prove that the vectors (3, 2, —1), (5, —7, 3) and
(11, =3, 1) are coplanar.

Find the constant A such that the three vectors
3,2,—1),(, —1,3)and (2, —3, A) are
coplanar.

Prove that the four points having position vectors
(2,1,0), (2, =2, =2),(7, =3, =1) and (13, 3, 5)
are coplanar.

Givenp = (1,4,1),q = (2,1, —1)andr = (1, —3,2),
find

(a) a unit vector perpendicular to the plane
containing p and ¢;

(b) a unit vector in the plane containing p X ¢ and
p X r that has zero x component.
Show that if @ is any vector and # any unit vector
then

a=(a-)a+iaX@xXun)

and draw a diagram to illustrate this relation
geometrically.

The vector (3, —2, 6) is resolved into two
vectors along and perpendicular to the line whose
direction cosines are proportional to (1, 1, 1). Find
these vectors.

Three vectors u, v, w are expressed in terms of the
three vectors I, m, n in the form

u=uwul+ um+ usn

v=vl+vm + vin

w=wl+ w,m + wyn
Show that

u-(v xXw)=2A-(mXn)

and evaluate A.

64

65

Forces F\, F,, ..., F, act at the points r,, r,, ..., r,

respectively. The total force and the total moment

about the origin O are
F=2F and G=2X2r,XF,

Show that for any other origin O’ the moment is
given by

—
G =G+O0OOXF
If O’ lies on the line
—
OO0 =r=aF XG) +F
find the constant « that ensures that G’ is parallel to
F. This line is called the central axis of the system
of forces.
Extended exercise on products of four vectors.
(a) Use (4.11) to show
(@aXb)-(¢c Xd)=1[(aXb)Xc]d

and use (4.13) to simplify the expression on the
right-hand side.

(b) Use (4.13) to show that
(aXb)yX(aXc)=la-(aXc)b
—[b-(a Xc)la

and show that the right-hand side can be
simplified to

[(@a X b)-cla
(c) Use (4.14) to show that
a X [b X (aXc)
=a X |[(b-c)a— (b-a)]

and simplify the right-hand side further. Note
that the product is different from the result in (b),
verifying that the position of the brackets matters
in cross products.

(d) Use the result in (a) to show that
UXm)-AXn)=0Pm-n) — (A -m)l n)

Take I, m and n to be unit vectors along the sides of
a regular tetrahedron. Deduce that the angle between
two faces of the tetrahedron is cos"%.
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4.3.1

Figure 4.47
Line AB in terms of

iy
r = OP.

Example 4.37

Solution

The vector treatment of the geometry of lines
and planes

Vector equation of a line

Take an arbitrary origin O and let OA = @, OB = b and OP = r, as in Figure 4.47. If
P is any point on the line then

OP = OA + ﬁ, by the triangle law
giving
r=a+ (AB (since APisa multiple of ﬁ)
=a + t(b — a) (since a +ﬁ=b)

Thus the equation of the line is
r=00—-1ta+th (4.15)

As ¢ varies from —oo to +o0, the point P sweeps along the line, with # = 0 correspond-
ing to point A and ¢ = 1 to point B.

Since OP = OA + AP = OA + tﬁ,wehaverza +1b —a).If wewritec =b —a
then we have an alternative intepretation of a line through A in the direction c:

r=a+tc (4.16)

The cartesian or component form of this equation is

x—a1=y—a2=z—a3(=t) @.17)

Cl Cz C3

where a = (a,, a,, a;) and ¢ = (c,, ¢,, ¢;). Alternatively the cartesian equation of (4.15)
may be written in the form
X —a y — ay 7 = a3

= = =1

b —a by, —a, b;—a;

where a = (a,, a,, a;) and b = (b,, b,, b;) are two points on the line. If any of the
denominators is zero, then both forms of the equation of a line are interpreted as the
corresponding numerator is zero.

Find the equation of the lines L, through the points (0, 1, 0) and (1, 3, —1) and L,
through (1, 1, 1) and (=1, —1, 1). Do the two lines intersect and, if so, at what point?

From (4.15) L, has the equation
r=0,1—-10) + (3, —t)=(1+2t, —1)
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Example 4.38

Solution

Example 4.39

and L, has the equation
r=(1-s5,1—s5,1—s)+(=s,—s5,85=00—-25,1 =25, 1)

Note that the cartesian equation of L, reduces to x = y; z = 1. The two lines intersect
if it is possible to find s and ¢ such that

t=1—-2s, 1 +2t=1-2s, —t=1

Solving two of these equations will give the values of s and ¢. If these values satisfy the
remaining equation then the lines intersect; however, if they do not satisfy the remaining
equation then the lines do not intersect. In this particular case, the third equation gives
t = —1 and the first equation s = 1. Putting these values into the second equation, the
left-hand side equals —1 and the right-hand side equals —1, so the equations are all
satisfied and therefore the lines intersect. Substituting back into either equation, the
point of intersection is (—1, —1, 1).

The position vectors of the points A and B are
(1,4,6) and (3,5,7)

Find the vector equation of the line AB and find the points where the line intersects the
coordinate planes.

The line has equation
r=(1,4,6) +t2,1,1)
or in components
x=1+2t
y=4+t
z=6+1¢

Thus the line meets the y—z plane when x = 0 and hence ¢ = —5 and the point of
intersection with the plane is (0, 2, ).

The line meets the z—x plane when y = 0 and hence t = —4 and the point of intersec-
tion with the plane is (=7, 0, 2).

The line meets the x—y plane when z = 0 and hence r = — 6 and the point of intersec-
tion with the plane is (—11, —2, 0).

The line L, passes through the points with position vectors
(5,1,7) and (6,0,8)

and the line L, passes through the points with position vectors
(3,1,3) and (—1,3, )

Find the value of « for which the two lines L, and L, intersect.
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Solution

Example 4.40

Using the vector form:
From (4.15) the equations of the two lines can be written in vector form as

Ly r=@G, 1,7+, —1,1)
Ly r=@G,1,3) +s(—4,2,a — 3)

These two lines intersect if #, s and « can be chosen so that the two vectors are equal,
that is they have the same components. Thus

5+t=3—4s
l—t=1+2s
7T+t=3+ s(a —3)

The first two of these equations are simultaneous equations for ¢ and s. Solving gives
t =2 and s = —1. Putting these values into the third equation

9=3—-—(a—3)=>a=-3

and it can be checked that the point of intersection is (7, —1, 9).

Using the cartesian form:
Equation (4.17) gives the equations of the lines as
L x—=35 _ y—1 _ z =17
6-5 0-1 8-7

L.: x-3 y-1 z-3
2- = =
-1-3 3-1 o-3
The two equations for x and y are
x—=5=1-y
G -n=30-1D

and are solved to give x = 7 and y = —1. Putting in these values, the equations for z
and o become

z—T7=2
z-3
oa-3

-1

which give z = 9and o = —3.

A tracking station observes an aeroplane at two successive times to be
(=500, 0, 1000) and (400, 400, 1050)

relative to axes x in an easterly direction, y in a northerly direction and z vertically
upwards, with distances in metres. Find the equation of the path of the aeroplane.
Control advises the aeroplane to change course from its present position to level flight
at the current height and turn east through an angle of 90°; what is the equation of the
new path?
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Figure 4.48
Path of aeroplane in
Example 4.40.

Solution

Example 4.41

Solution

z|
A(=500,0,1000)
S cyk
.
N

<, B(400,400,1050)
4

N
d

o\
w y

E

w)

The situation is illustrated in Figure 4.48. The equation of the path of the aeroplane is
r = (—500, 0, 1000) + #7900, 400, 50)

The new path starts at the point (400, 400, 1050). The vector AB X [k is a vector in
the direction BD which is perpendicular to k, and is therefore horizontal, and at 90° to
AB in the easterly direction. Thus we have a 90° turn to horizontal flight. Since

(900, 400, 0) X k = (400, —900, 0)
the new path is
r = (400, 400, 1050) + (400, —900, 0)

Equating the components

x =400 + 400s
y = 400 — 900s
z = 1050
In cartesian coordinates the equations are
9x + 4y= 5200
z = 1050

It is necessary to drill to an underground pipeline in order to undertake repairs, so it is
decided to aim for the nearest point from the measuring point. Relative to axes x, y in
the horizontal ground and with z vertically downwards, remote measuring instruments
locate two points on the pipeline at

(20,20, 30) and (O, 15, 32)

with distances in metres. Find the nearest point on the pipeline from the origin O.

The situation is illustrated in Figure 4.49. The direction of the pipeline is
d = (0, 15, 32) — (20, 20, 30) = (=20, —5,2)
Thus any point on the pipeline will have position vector

r = (20, 20, 30) + #(—20, —5, 2)
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Figure 4.49
Pipeline of
Example 4.41

Example 4.42

Solution

Ground
level

A P
Underground d

pipeline

for some ¢. Note that this is just the equation of th_e) line given in (4.15). At the shortest
distance from O to the pipeline the vector r = OP is perpendicular to d, sor-d = 0
gives the required condition to evaluate . Thus

(—20, =5, 2)-[(20, 20, 30) + #(—20, —=5,2)] = 0
and hence —440 + 429¢ = 0. Putting this value back into r gives
r=(—0.51, 14.87, 32.05)

Note that the value of ¢ is close to 1, so the optimum point is not far from the second
of the points located.

Find the shortest distance between the two skew lines

£=y—9=z—2 and x+6=y+5=z—10
3 -1 1 -3 2 4

Also determine the equation of the common perpendicular. (Note that two lines are said
to be skew if they do not intersect and are not parallel.)

In vector form the equations of the lines are
r=1(0,9,2)+13,—-1,1)

and
r=(—6,-5,10) + s(—3,2,4)

The shortest distance between the two lines will be their common perpendicular; see
Figure 4.50. Let P, and P, be the end points of the common perpendicular, having
position vectors r, and r, respectively, where

r,=(0,9,2)+13, -1, 1)
and

r,=(—6,—5,10) + 1,(—3,2,4)
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Figure 4.50
Skew lines in
Example 4.42.

Then the vector ﬁ is given by

PP =r —r,= (6,14, =8) + 1,3, =1, 1) = 1,(=3.2.4) (4.18)

Since (3, —1, 1) and (—3, 2, 4) are vectors in the direction of each of the lines, it
follows that a vector n perpendicular to both lines is

n=(-3,24) X@3,—1,1)= (6,15, =3)
So a unit vector perpendicular to both lines is
i = (6,15, —3)N270 = (2,5, —1A30
Thus we can also express ﬁ as
Bp, = di
where d is the shortest distance betw& the two lines.
Equating the two expressions for P,P, gives
(6,14, —8) + 1,3, —1,1) — 1,(—3,2,4) = (2,5, —1)d/\N30
Taking the scalar product throughout with the vector (2, 5, —1) gives
6,14, =8)- (2,5, - 1) + 1,3, -1, 1)- (2,5, —1) — ,(—3,2,4)- (2,5, — 1)
=(2,5 —1)-(2,5, —1)dn30
which reduces to
90 + 0t, + 01, = 30d/N30
giving the shortest distance between the two lines as
d = 3\30

To obtain the equation of the common perpendicular, we need to find the coordinates
of either P, or P, — and to achieve this we need to find the value of either 7, or #,. We
therefore take the scalar product of (4.18) with (3, —1, 1) and (—3, 2, 4) in turn, giving
respectively

11t +7t, =4
and

=Tt — 29¢t, = 22
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Example 4.43

Solution

Figure 4.51
Looking for hidden
lines in Example 4.43.

which on solving simultaneously give 1, = 1 and #, = — 1. Hence the coordinates of the
end points P, and P, of the common perpendicular are
r,=(0,9,2)+ 13, -1,1) = (3,8, 3)
and
r,=(—6,-5,10) — 1(—3,2,4) = (-3, =7,6)
From (4.16) the equation of the common perpendicular is
r=@3,8273) +s52,5 —1)

or in cartesian form

A box with an open top and unit side length is observed from the direction (a, b, ¢), as
in Figure 4.51. Determine the part of OC that is visible.

The line or ray through Q(0, 0, @) parallel to the line of sight has the equation
r=1(0,0, a) + t(a, b, ¢)

where 0 = a = 1 to ensure that Q lies between O and C. The line RS passes through
R(1, 0, 1) and is in the direction (0, 1, 0), so from (4.16) it has the equation

r=(1,0,1) + 50, 1, 0)

The ray that intersects RS must therefore satisfy

c
ta=1, th=s, x=1-——
a

Z .
.
B
3 .
.
.
0
., .
s

Note that if ¢ = 0 then we are looking parallel to the open top and can only see the
point C. If ¢ < 0 then we are looking up at the box; since o > 1, we cannot see any
of side OC, so the line is hidden. If, however, ¢ > a then the solution gives « to be
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negative, so that all of the side OC is visible. For 0 < ¢ < a the parameter « lies between
0 and 1, and only part of the line is visible. A similar analysis needs to be performed for
the other sides of the open top. Other edges of the box also need to be analysed to check
whether or not they are visible to the ray.

4.3.2 Exercises

66 If A and B have position vectors (1, 2, 3) and 70 Pis apoint on a straight line with position vector
(4, 5, 6) respectively, find r = a + th. Show that
(a) the direction vector of the line through A and B; r?=a*+ 2a-bt + b**
(b) the vector equation of the line through A and B; By completing the square, show that r* is a
(c) the cartesian equation of the line minimum for the point P_f)or which 1 = —a-b/b".
q ' Show that at this point OP is perpendicular to the
67 Find the vector equation of the line through the line r = a + 1b. (Thls proves the we ll—knov&fn result
point A with position vector OA = (2.1, 1) in the that the shortest distance from a point to a line
direction d = (1, 0, 1). Does this line pass through is thf: length of the perpendicular from that point to
any of the points (1, 1, 0), (1, 1, 1), (3, 1, 3), the line.)
(%, 1, —%)? Find the vector equation of the line . . .
through the point A and perpendicular to the 71  Find the vector equation of the line through the
) ¢ a ad points with position vectors a = (2, 0, —1) and
plane o and d. b = (1, 2, 3). Write down the equivalent cartesian
. coordinate form. Does this line intersect the line
68 ShOW that .the line J01n11.1g (2,3, 4) to (1, 2, 3) thl'Ollgh the pOintS c = (0, 0, l) and d = (1, 0, l)q
is perpendicular to the line joining (1, 0, 2) to
2.3.-2). 72  Find the shortest distance between the two lines
69 Prove that the lines r = (1,2, —1) + #2, 2, 1) and r=4,—-2,3) +1#2,1, -1
r=(—1, —2,3) + s(4, 6, —3) intersect, and find and
the coordinates of their point of intersection. Also
find the acute angle between the lines. r=(7,-2,1)+s3,2,1)
4.3.3 Vector equation of a plane
n To obtain the equation of a plane, we use the result that the line joining any two points
in the plane is perpendicular to the normal to the plane, as illustrated in Figure 4.52. The
vector n is perpendicular to the plane, a is the position vector of a given p(El)t A in the
a ' plane and r is the position vector of any point P on the plane. The vector AP =r — a
o r is perpendicular to n, and hence
Figure 4.52 r—an=0
Equatlon of a plane; so that
n is perpendicular to
the plane.

r-n=a-n Or r-n=p 4.19)
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Example 4.44

Solution

Example 4.45

Solution

is the general form for the equation of a plane with normal n. In the particular case
when n is a unit vector, p in (4.19) represents the perpendicular distance from the
origin to the plane. In cartesian form we take n = (e, 3, v), and the equation becomes

ax+ By +yz=p (4.20)

which is just a linear relation between the variables x, y and z.

Find the equation of the plane through the three points
a=(,1,1), b=(0,1,2) and ¢=(—1,1,—1)

The vectorsa — b = (1,0, —1) anda — ¢ = (2, 0, 2) will lie in the plane. The normal
n to the plane can thus be constructed as (@ — b) X (a — ¢), giving

n=(1,0,—-1) X (2,0,2) = (0, —4,0)

Thus from (4.19) the equation of the plane is given by

rn=a-n
or

r-(0,—4,0)=(,1,1)-(0, —4,0)
giving

r-(0,—4,0)=—4
In cartesian form
x,y,2)-(0,—4,0) = —4

or simply y = 1.

A metal has a simple cubic lattice structure so that the atoms lie on the lattice points
given by

r=a(l,m, n)
where a is the lattice spacing and [/, m, n are integers. The metallurgist needs to
identify the points that lie on two lattice planes

LP, througha(0,0,0), a(1,1,0) and a(0,1,2)

LP, througha(0,0,2), a(l,1,0) and a(0,1,0)

The direction perpendicular to LP, is (1, 1, 0) X (0, 1, 2) = (2, —2, 1) and hence the
equation of LP, is

r-(2,—2,1) =0 orin cartesian form 2x —2y +z=20 4.21)
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Example 4.46

Solution

Example 4.47

Solution

The direction perpendicular to LP, is (1, 1, —2) X (0, 1, —2) = (0, 2, 1) and hence the
equation of LP, is

r-(0,2,1) =2 orin cartesian form 2y + z =2 4.22)

Points that lie on both lattice planes must satisfy both (4.21) and (4.22). It is easiest to
solve these equations in their cartesian form. The coordinates must be integers, so take
y = m; then z can easily be calculated from (4.22) as

z=2-—2m

and then x is computed from (4.21) to be x = 2m — 1.
Hence the required points all lie on a line and take the form

r=a2m—1,m,2 — 2m)

where m is an integer.

Find the point where the plane
r-(1,1,2)=3

meets the line
r=2,1,1)+ A0, 1,2)

At the point of intersection, r must satisfy both equations, so

[2,1,1) + A0, 1,2)]-(1,1,2) =3

or
5+50=3

SO
A=

Substituting back into the equation of the line gives the point of intersection as
r=Q2s55

Find the equation of the line of intersection of the two planes x + y + z = 5 and
4x +y + 2z = 15.

In vector form the equations of the two planes are
r-(1,1,1)=5
and

r@1,2) =15
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Example 4.48

Solution

The required line lies in both planes, and is therefore perpendicular to the vectors (1, 1, 1)
and (4, 1, 2), which are normal to the individual planes. Hence a vector ¢ in the direction
of the line is

c=({1,1,1)X 4, 1,2)=(1,2,-3)

To find the equation of the line, it remains only to find the coordinates of any point on the
line. To do this, we are required to find the coordinates of a point satisfying the equation
of the two planes. Taking x = 0, the corresponding values of y and z are given by

y+z=5 and y+2z=15

that is, y = —5 and z = 10. Hence it can be checked that the point (0, —5, 10) lies in
both planes and is therefore a point on the line. From (4.16) the equation of the line is

r=(0,—5,10) + «(1, 2, —3)

or in cartesian form

_y+5 z-10
2 -3

x
— t
1

Find the perpendicular distance from the point P(2, —3, 4) to the plane x + 2y + 2z = 13.

In vector form the equation of the plane is
r-(1,2,2) =13

and a vector perpendicular to the plane is
n=(1,22)

Thus from (4.16) the equation of a line perpendicular to the plane and passing through
P2, =3,4)is

r=2,-3,4+1«1,2,2)
This will meet the plane when

r-(1,2,2) =2, -3,4)-(1,2,2) + 1(1,2,2)-(1,2,2) = 13
giving

4+9r=13
so that

t=1
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Thus the line meets the plane at N having position vector

r=02,-3,49+1(1,2,2) =3, -1,6)

Hence the perpendicular distance is

PN =\V[3 -2+ (=1 +372+(6—47=3

4.3.4 Exercises

Many of the exercises can be checked using the geom3d package in MAPLE.

73

74

75

76

77

78

Find the vector equation of the plane that passes
through the points (1, 2, 3), (2, 4, 5) and (4, 5, 6).
What is its cartesian equation?

Find the equation of the plane with perpendicular
n = (1, —1, 1) that passes through the point with
position vector (2, 3, 3). Show that the line with
equationr = (—1, —1,2) + #2, 0, —2) lies in this
plane.

Find the vector equation of the plane that contains
the line r = @ + Ab and passes through the point
with position vector c.

The line of intersection of two planes r-n, = p,
and r-n, = p, lies in both planes. It is therefore
perpendicular to both n, and n,. Give an
expression for this direction, and so show that
the equation of the line of intersection may be
written as r = r, + #(n, X n,), where r, is any
vector satisfying ry-n, = p, and ry-n, = p,.
Hence find the line of intersection of the planes
r-(1,1,1)=5andr-(4, 1,2) = 15.

Find the equation of the line through the point
(1, 2, 4) and in the direction of the vector

(1, 1, 2). Find where this line meets the plane
x+ 3y —4z=35.

Find the acute angle between the planes
2x +y—2z=5and3x — 6y — 2z =17.

79

80

81

82

83

Given thata = (3, 1,2) and b = (1, —2, —4) are
the position vectors of the points P and Q
respectively, find

(a) the equation of the plane passing through Q
and perpendicular to PQ;

(b) the distance from the point (—1, 1, 1) to the
plane obtained in (a).

Find the equation of the line joining (1, —1, 3) to
(3, 3, —1). Show that it is perpendicular to the plane
2x + 4y — 4z = 5, and find the angle that the line
makes with the plane 12x — 15y + 16z = 10.

Find the equation of the plane through the line
r=(1,-3,4) +1#2,1,1)
and parallel to the line
r=s(1,2,3)
Find the equation of the line through P(—1, 0, 1)
that cuts the line r = (3, 2, 1) + #(1, 2, 2) at right

angles at Q. Also find the length PQ and the
equation of the plane containing the two lines.

Show that the equation of the plane through the
points P, P, and P; with position vectors r,, r,
and r, respectively takes the form

rr Xr) + @ X))+ X )] =1 Xry)
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N I T LTS e T L1 [0 M Spin-dryer suspension

Vectors are at their most powerful when dealing with complicated three-dimensional
situations. Geometrical and physical intuition are often difficult to use, and it becomes
necessary to work quite formally to analyse such situations. For example, the front
suspension of a motor car has two struts supported by a spring-and-damper system and
subject to a variety of forces and torques from both the car and the wheels. To analyse
the stresses and the vibrations in the various components of the structure is not easy,
even in a two-dimensional version; the true three-dimensional problem provides a testing
exercise for even the most experienced automobile engineer. Here a much simpler situ-
ation is analysed to illustrate the use of vectors.

4.4.1 Point-particle model

As with the car suspension, many machines are mounted on springs to isolate vibra-
tions. A typical example is a spin-dryer, which consists of a drum connected to the
casing by heavy springs. Oscillations can be very severe when spinning at high speed,
and it is essential to know what forces are transmitted to the casing and hence to the
mounts. Before the dynamical situation can be analysed, it is necessary to compute
the restoring forces on the drum when it is displaced from its equilibrium position. This
is a static problem that is best studied using vectors.

We model the spin-dryer as a heavy point particle connected to the eight corners of
the casing by springs (Figure 4.53). The drum has weight W and the casing is taken to
be a cube of side 2L. The springs are all equal, having spring constant k and natural

Figure 4.53 B
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length LV3. Thus when the drum is at the midpoint of the cube the springs are neither
compressed nor extended.

The particle is displaced from its central position by a small amount (a, b, ¢), where
the natural coordinates illustrated in Figure 4.53 are used; the origin is at the centre of
the cube and the axes are parallel to the sides. What is required is the total force act-
ing on the particle arising from the weight and the springs. Clearly, this information is
needed before any dynamical calculations can be performed. It will be assumed that the
displacements are sufficiently small that squares (/L)% (b/L)*, (c/L)* and higher powers
are neglected.

Consider a typical spring PA. The tension in the spring is assumed to obey Hooke’s
law: that the force is along PA and has magnitude proportional to extension. PA/ | ﬁ|
is the unit vector in the direction along PA, and | PA | — L3 is the extension of the spring
over its natural length L\/3, so in vector form the tension can be written as

[
T,=k—-(|PA| - L\3) (4.23)
|PA|

where k is the proportionality constant.
Now

PA=0A-OP=(L—-aL—-bL—-c
so calculating the modulus squared gives
|PA]> = (L — a)> + (L — b + (L — ¢)?
= 3L* — 2L(a + b + ¢) + quadratic terms
Thus

. 2 1/2
|PA| = [1 AR +c)] L3

and, on using the binomial expansion (see equation (7.16)) and neglecting quadratic
and higher terms, we obtain

IPA| = [1 - SLL(a +b+ c)}L\/3

Putting the information acquired back into (4.23) gives

(- alL,1—b/L,1—c/L) (=1)(a + b + c)[~3
[1—(a+ b+ c)/3L1LY3 3L

T,=kL
and by expanding again, using the binomial expansion to first order in a/L and so on,
we obtain

T,=—3k(a+b+o(l,1,1)

Similar calculations give

Ty=-1k(—a+b+o(—111)

Te=—-tk(—a—b+o(—1,—-11)

T, =—tk(a—=b+ o), -1, 1)
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Ty =—-tk(a+b—o,1,-1)
T.=—-tk(—a+b—o)(—-1,1,-1)
To=—%k(—=a—b—oc)(—1,—1,-1)
Ty=—1k(a—b—o)(l,—1,—1)
The total spring force is therefore obtained by adding these eight tensions together:
T= -%k(a, b, c)

The restoring force is therefore towards the centre of the cube, as expected, in the
direction PO and with magnitude 3k times the length of PO.
When the weight is included, the total force is

F = (-3ka, -3kb, —3kc — W)
If the drum just hangs in equilibrium then F = 0, and hence

=b=0 dc——ﬂ
a — = an 8]{

Typical values are W = 400N and k = 10000Nm, and hence
¢ = —3X400/8 X 10000 = —0.015m

so that the centre of the drum hangs 1.5 cm below the midpoint of the centre of the casing.

It is clear that the model used in this section is an idealized one, but it is helpful
in describing how to calculate spring forces in complicated three-dimensional static
situations. It also gives an idea of the size of the forces involved and the deflections.
The next major step is to put these forces into the equations of motion of the drum;
this, however, requires a good knowledge of calculus — and, in particular, of differential
equations — so it is not appropriate at this point. You may wish to consider this problem
after studying the relevant chapters later in this book. A more advanced model must
include the fact that the drum is of finite size.

4.5 Engineering application: [ELIEEYEYEL Rl

One of the standard methods of supporting bridges is with cables. Readers will no doubt
be familiar with suspension bridges such as the Golden Gate in the USA, the Humber
bridge in the UK and the Tsing Ma bridge in Hong Kong with their spectacular form.
Cable-stayed bridges are similar in that they have towers and cables that support a
roadway but they are not usually on such a grand scale as suspension bridges. They
are often used when the foundations can only support a single tower at one end of the
roadway. They are commonly seen on bridges over motorways and footbridges over
steep narrow valleys.

In any of the situations described it is essential that information is available on the
tension in the wire supports and the forces on the towers. The geometry is fully three-
dimensional and quite complicated. Vectors provide a logical and efficient way of dealing
with the situation.
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Figure 4.54
Model of a stayed
bridge.
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4.5.1 A simple stayed bridge

There are many configurations that stayed bridges can take; they can have one or more
towers and a variety of arrangements of stays. In Figure 4.54 a simple example of a
cable-stayed footbridge is illustrated. It is constructed with a central vertical pillar with
four ties attached by wires to the sides of the pathway.

Relative to the axes, with the z axis vertical, the various points are given, in metres,
as A(5, —2,0.5), B(10, 2, 1), C(15, —2, 1.5), D(20, 2, 1) and S(0, 0, 10). Assuming the
weight is evenly distributed, there is an equivalent weight of 2 KN at each of the four
points A, B, C and D. An estimate is required of the tensions in the wires and the force
at the tie point S.

The vectors along the ties can easily be evaluated:

AS = (-5,2,9.5), BS =(-10,-2,9)

CS = (—15,2,8.5), DS = (—20, =2, 9)
The tension at S in the tie AS can be written T, = tAﬁ . Assuming the whole system
is in equilibrium, the vertical components at A must be equal

2

T 95
and the four tensions can be computed similarly.

T, = (5, —2, —9.5) = (1.052, —0.421, —2) and |T,| = 2.299 kN

T,-k =2 andhence 1,

Ty = 5(10,2, =9) = (2.222, 0.444, —2) and |T5| = 3.022kN
T. = $5(15, =2, —8.5) = (3.529, —0.471, —2)  and |T.| = 4.084 kN
T, = £(20,2, —9) = (4.444, 0.444, —2) and |T,| = 4.894 kN

The total force acting at the tie point S is
T=T,+Ty+T.+ Ty,= (1125 —0.004, —8)

Thus with straightforward addition of vectors we have been able to compute the
tensions and the total force on the tower.

The question now is how to compensate for the total force on the tower and to try to
ensure that it is subject to zero force or a force as small as possible. Suppose that it is
decided to have just a single compensating tie wire attached to S and to one side on the
pathway at P. It is assumed that on this side of the footbridge the pathway is flat and lies
in the x—y plane. Where should we position the attachment of the compensating wire so
that it produces zero horizontal force at S?
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Let the attachment point P on the side of the footbridge be (—a, 2, 0) so that the
tension in the compensating cable is

T, = ,SP = t,(—a, 2, —10)

We require the y component of (T + T}) to be zero so that
2t, — 0.004 = 0 and hence ¢, = 0.002

which in turn gives for the x component
at, = 11.248 and hence a = 5624 metres!

Clearly the answer is ridiculous and either more than one compensating cable must be used
or the y component can be neglected completely since the force in this direction is only 4 N.

As a second attempt we specify the attachment wire at P(—5, 2, 0). Requiring the x
component of T + T} to be zero we see that

T+ T,=T+,SP = (11.25, —0.004, —8) + 1,(—5, 2, —10)

gives f, = 2.25. Hence the total force at S is (0, 4.5, —30.5). Although the force in the
x direction has been reduced to zero, an unacceptable side force on the tower in the y
direction has been introduced.

In a further effort, we introduce two equal compensating wires connected to the
points P(=5, —2, 0) and P’(—35, 2, 0). The total force at S is now

T+Ty+ Ty =T+ t,SP + t,5P'
= (11.25, —0.004, —8) + 1,(—5, 2, —10) + 1,(—5, =2, —10)

Now choosing #, = 1.125 gives a total force (0, —0.004, —30.5). We now have a
satisfactory resolution of the problem with the only significant force being in the down-
wards direction.

The different forms of stayed-bridge construction will require a similar analysis
to obtain an estimate of the forces involved. The example given should be viewed as
illustrative.

4.6 Review exercises (1-22)

Check your answers using MATLAB whenever possible.

1

2

Giventhata = 3i —j — 4k, b = —2i + 4 — 3k relative to the origin O, find

andc =i + 2j — k, find
(a) the magnitude of the vectora + b + ¢;
(b) a unit vector parallel to 3a — 2b + 4c;

(a) the midpoint of the side XY of the triangle;
(b) the area of the triangle;
(c) the volume of the tetrahedron OXYZ.

(c) the angles between the vectors a and b and

between b and c;

3 The vertices of a tetrahedron are the points

(d) the position vector of the centre of mass of W2, 1,3), X3,3,3), Y4,2,4 and
particles of masses 1, 2 and 3 placed at points A, Z(3,3,5)

B and C with position vectors a, b and ¢ Determine

respectively. (a) the vectors WX and W—Y);

If the vertices X, Y and Z of a triangle have (b) the area of the face WXZ;

position vectors

(c) the volume of the tetrahedron WXZY;

x=(2,2,6), y=(4,6,4) and z=4,1,7) (d) the angles between the faces WXY and WYZ.
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10

11

Givena = (—1, =3, —1),b = (¢, 1, 1) and
¢ = (1, 1, g) determine the values of g for which

(a) a is perpendicular to b
b)aX®BXc)=0

Given the vectorsa = (2, 1,2) and b = (=3, 0, 4),
evaluate the unit vectors @ and b. Use these unit
vectors to find a vector that bisects the angle
between a and b.

A triangle, ABC, is inscribed in a circle, centre O,
with AOC as a diameter of the circle. Take

OA = a and OB = b. By evaluating AB-CB show
that angle ABC is a right angle.

According to the inverse square law, the force on a
particle of mass m, at the point P, due to a particle
of mass m, at the point P, is given by

mm,

e
-—F wherer = PP,
.

Particles of mass 3m, 3m, m are fixed at the points
A(1, 0, 1), B(0, 1, 2) and C(2, 1, 2) respectively.
Show that the force on the particle at A due to the
presence of B and C is

2 2

y_m(_l’ 2,2)

\3

Show that the vector @ which satisfies the vector
equation

aX(@+2)=-2i+j+k
must take the forma = (a, 2a — 1, 1). If in
addition the vector @ makes an anglecos™ (3)
with the vector (i —j + k) show that there

are now two such vectors that satisfy both
conditions.

The electric field at a point having position vector
r, due to a charge e at R, is e(r — R)/|r = R|3.
Find the electric field E at the point P(2, 1, 1)
given that there is a charge e at each of the

points (1, 0, 0), (0, 1, 0) and (0, 0, 1).

) — —>
Given that OP = (3, 1, 2) and OQ = (1, =2, —4)
are the position vectors of the points P and Q
respectively, find

(a) the equation of the plane passing through Q
and perpendicular to PQ;

(b) the perpendicular distance from the point
(—1, 1, 1) to the plane.

(a) Determine the equation of the plane that
passes through the points (1, 2, —2), (—1, 1, —9)

12

13

14

16

and (2, —2, —12). Find the perpendicular distance
from the origin to this plane.

(b) Calculate the area of the triangle whose vertices
are at the points (1, 1, 0), (1, 0, 1) and (O, 1, 1).

Find the point P on the line L through the points
A(5,1,7) and B(6,0, 8)

and the point Q on the line M through the points
C@3,1,3) and D(—1,3,3)

such that the line through P and Q is perpendicular
to both lines L and M. Verify that P and Q are at

a distance V6 apart, and find the point where the line
through P and Q intersects the c